Semileptonic and rare heavy flavour decays at LHCb PIC 2019, Taipei

Mark Smith on behalf of the LHCb collaboration

September 2019

Imperial College London

LHCb

Data collected:

• Run 1 : 3 fb^{-1} at 7–8 TeV

• Run 2 : 6 fb
$$^{-1}$$
 at 13 TeV

σ(pp → B[±]X): JHEP 12, 026 (2017)
7 TeV - 43.0 ± 0.2 ± 2.5 ± 1.7 μb.
13 TeV - 86.6 ± 0.5 ± 5.4 ± 3.4 μb.

Semileptonic decays

Semileptonic decays

$$R(D^{(*)}) = \frac{\mathcal{B}(B \to D^{(*)}\tau\nu_{\tau})}{\mathcal{B}(B \to D^{(*)}\mu\nu_{\mu})}$$

BaBar:

PRL 109, 101802 (2012) PRD 88, 072012 (2013) Belle:

PRD 92, 072014 (2015) PRL 118, 211801 (2017) PRD 97, 012004 (2018) arXiv:1904.08794 (2019) LHCb:

PRL 120, 171802 (2018) PRD 97, 072013 (2018) PRL 115, 111803 (2015)

Uncertainty from $B \rightarrow D^{**} l^+ \nu_l$

$B ightarrow D^0 \mu^- u_\mu X$ branching fractions

More R(X)

PRL 120 121801 (2018)

All hadron species at LHCb!

Consider B_c decays in Run 1:

- Take $\tau^+ \rightarrow \mu^+ \overline{\nu}_\tau \nu_\mu$ (17.4%)
- 3D template fit to kinematic variables

$$R(J/\psi) = \frac{\mathcal{B}(B_c^+ \to J/\psi \tau^+ \nu_{\tau})}{\mathcal{B}(B_c^+ \to J/\psi \mu^+ \nu_{\mu})} = 0.71 \pm 0.17 \pm 0.18$$

Major systematics:

- Simulation stats: Reducible
- B_c → J/ψ FF: Reducible with lattice - see here

Compatible with SM expectations at $\sim 2\,\sigma$

Rare decays

FCNC are rare processes Good place to look for NP!

Some deviations from the SM observed in $b \rightarrow sl^{-}l^{-}$:

- $B \rightarrow K^* \mu^+ \mu^-$ angular analysis JHEP 1602, 104 (2016)
- $d\mathcal{B}(B_s^0 \rightarrow \phi \mu^+ \mu)/dq^2$ JHEP 09, 179 (2015)
- $d\mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)/dq^2$ JHEP 06, 133 (2014)

A question of hadronic uncertainties?

$R_{\kappa^{(*)}}$

$R_{K^{(*)}}$

$B^+ ightarrow K^+ \mu^\pm e^\mp$

Run 1 dataset - 3 fb^{-1} at 7–8 TeV:

arXiv:1909.01010

- Lepton flavour violation forbidden in SM.
- Models to explain $b \rightarrow sll$ can lead to LFV.
- BF of order 10⁻⁸ possible. JHEP 06, 072 (2015)

 $B_{(s)}^0$

- Run 1 dataset 3 fb^{-1} at 7–8 TeV Search for B^0 and B_s^0 decays:
 - Hadronic τ^+ decay:

 $\tau^+ \to \pi^+ \pi^- \pi^+ \overline{\nu}_\tau$

- Can solve the *B* kinematics with a twofold ambiguity.
- Peak in M_B

No signal, limits set at 90% CL:

$$\begin{split} \mathcal{B}(B^0_s \to \tau^{\pm} \mu^{\mp}) < 3.4 \times 10^{-5} \\ \mathcal{B}(B^0 \to \tau^{\pm} \mu^{\mp}) < 1.2 \times 10^{-5} \end{split}$$

- Factor 2 improvement for B⁰ wrt BaBar search PRD 77, 091104 (2008)
- First search for B_s^0

$B^+ ightarrow \mu^+ \mu^- \mu^+ u_\mu$

- Run 1 + 2016 datasets
 - $B^+ \to \mu^+ \nu_\mu$ helicity suppressed.
 - Belle: $(6.46 \pm 2.22 \pm 1.60) \times 10^{-7}$ PRL 121, 031801 (2018)
 - Scope for observable new physics.
 - One track final state.

Include $\gamma^* \to \mu^+ \mu^-$:

- Lift helicity suppression
- 3-track vertex

Fit corrected mass

$$m_{corr} = \sqrt{M_{\mu\mu\mu}^2 + |p_{\perp}^2|} + |p_{\perp}|$$

peaks at B mass when missing a ν_{μ} . No signal seen - limit set:

$${\cal B}(B^+ o \mu^+ \mu^- \mu^+
u_\mu) < 1.6 imes 10^{-8}$$

Looking forward at LHCb

BACKUP

Semi-leptonic B decays at the LHC

- \bullet Theoretically 'clean' \rightarrow only calculate one hadronic current.
- Large *B* production cross-section.
- Large quantity of Λ_b , B_s and B_c .
- Muon to trigger on at L0.

- No beam energy constraint.
- Hard to make an exclusive HLT selection. Use an MVA.
- Many backgrounds.
- Need lots of simulation.

Semi-leptonic B decays at the LHC

Ascertain *B* kinematics up to two-fold ambiguity. Ciezarek et al. JHEP (2017):21

Estimate corrected mass:

$$m_{corr} = |p_T'| + \sqrt{|p_T'|^2 + m_{vis}^2}$$

 p'_{T} is visible momentum transverse to *B* flight.

Variable	Definition	μ	au
m_{miss}^2	$\left(p_B - p_{vis}\right)^2$	peaks at 0	> 0
q^2	(p _B - p _{D*}) [*]	$0 { m MeV} < q^2 < 3270 { m MeV}$	$m_{ au} < q^2 < 3270 { m MeV}$
E_{μ}^{*}	${\it E}_{\mu}$ in ${\it B}$ frame	hard	soft

Muonic $R(D^*)$ method _{PRL 115, 111803} (2015)

- 3D template fit.
 - μ mis-ID and combinatorial taken from data.
 - All other templates from simulation with systematic variations.
- Major backgrounds:
 - $B \rightarrow D^{**} \mu \nu$
 - $B \to D^{*+} X_c, X_c \to X \mu \nu$
 - Reduce with charged isolation.

Muonic $R(D^*)$ - results _{PRL 115, 111803} (2015)

 $2.1\,\sigma$ deviation from SM prediction

Major systematics:

- Simulation sample size \rightarrow reducible
- mis-ID sample size \rightarrow reducible
- $B \rightarrow D^* \tau \nu$ form-factor \rightarrow scale with data

τ reconstruction : $\tau^+ \to \pi^+ \pi^- \pi^+ \overline{\nu}_{\tau}(\pi^0)$ (13.9%)

$$\mathcal{K}(D^*) = \frac{\mathcal{B}(B \to D^* \tau \nu_{\tau})}{\mathcal{B}(B \to D^* \pi^+ \pi^- \pi^+)}$$

- Require external input to turn K(D^{*}) into R(D^{*}).
- Reconstructable τ decay vertex \rightarrow background reduction!
- Estimate *B* kinematics (backup).

Hadronic $R(D^*)$ - I

Candidates / 0.1

 10^{3}

 10^{2}

10

PRL 120, 171802 (2018) PRD 97, 072013 (2018)

LHCb simulation

Prompt $(D^*\pi\pi\pi X)$

 $(D^*\tau v)$

e-charm (D*DX)

Major backgrounds:

- $B \rightarrow D^{*+}\pi^+\pi^-\pi^-X$
 - Reduced with τ flight distance cut.
- $B \rightarrow D^{*+}X_c$
 - $X_c \rightarrow \pi^+ \pi^- \pi^- X$.
 - Reduced with a multivariate discriminator.

Normalisation fit to $m(D^{*+}3\pi)$:

Hadronic $R(D^*)$ - II

PRL 120, 171802 (2018) PRD 97. 072013 (2018)

1.5

(a)

 t_{τ} [ps]

Run 1, 3 fb⁻¹. Fit q^2 , t_{τ} , BDT classifier:

Systematics:

- Simulation sample size
- Double charm background
- $D^{*-}3\pi X$ background
- $D^{**}\tau\nu_{\tau}$ feed-down

Candidates / 0.1 6000 (c) 5000 4000 3000 2000 1000 0 0.1 0.2 BDT

 $R(D^{*-}) = 0.291 \pm 0.019(stat) \pm 0.026(syst) \pm 0.013(BR)$

$B ightarrow D^0 \mu^- u_\mu X$ branching fractions

 $B \rightarrow D\mu^+ \nu_\mu X$ background significant source LHCb-PAPER-2018-024 of uncertainty - measure it! Take B^- from $\bar{B}^*_{\epsilon 2} \to B^- K^+$ and constrain B^- kinematics. 8 5000 W LHCb $\overline{B}_{s2}^{*0} \to B^{*}K^{+} \longrightarrow OSK$ data Candidates / (1 0000 0000 SSK data 1000 50 100 150 200 $m_{\min} - m_B - m_K \,[\text{MeV}]$

• Quadratic equation for B^-K^+ energy \rightarrow pick minimum value for real solution.

$$m_{min}=\sqrt{m_B^2+m_K^2+2m_B\sqrt{p_K^2\sin^2 heta+m_K^2}}$$

Constrain signal and background from m_{min} - m_B - m_K distribution.
 Calculate m²_{miss} assuming the signal decay.

$B ightarrow D^0 \mu^- u_\mu X$ branching fractions

Fit m_{miss}^2 for $B^- \to D^0 \mu^- \overline{\nu}_{\mu} X$ components.

LHCb-PAPER-2018-024

$$f_{D^{**0}}^{D} = 0.21 \pm 0.07$$

$$f_{D^{*0}} = 1 - f_{D^0} - f_{D^{**0}}$$

PRL 120, 121801 (2018)

$$R(J/\psi) = \frac{\mathcal{B}(B_c^+ \to J/\psi \tau^+ \nu_{\tau})}{\mathcal{B}(B_c^+ \to J/\psi \mu^+ \nu_{\mu})} \qquad \tau^+ \to \mu^+ \overline{\nu}_{\tau} \nu_{\mu}$$

 $R(J/\psi)$

- Probing same physics as R(D*). SM expectation 0.25-0.28.
 Phys. Lett. B452 (1999) 129, arXiv:hep-ph/0211021,
 Phys. Rev. D73 (2006) 054024, Phys. Rev. D74 (2006) 074008
- Only available at LHCb.
- As per $R(D^*)$ use kinematic distributions: m_{miss}^2 , $Z(q^2, E_{\mu}^2)$.
 - Additionally consider B_c^+ decay-time.
 - $B_c^+ \rightarrow J/\psi$ form-factors are unkown estimated from fit to enriched sample of the normalisation mode.

$R(J/\psi)$ results _{PRL 120, 121801 (2018)}

3D template fit: B_c decay-time, m_{miss}^2 , Z.

$$R(J\!/\psi\,) = 0.71 \pm 0.17 \pm 0.18$$

- Compatible with SM at 2σ .
- First evidence of decay ${\it B}_{\rm c}^+ \rightarrow {\it J}\!/\psi\,\tau^+\nu_\tau$
- Largest systematics from $B_c \rightarrow J/\psi$ form-factor and limited simulation sample size both can be improved.

$\Lambda_b \rightarrow \Lambda_c$ form-factor PRD 96, 112005 (2017)

We can measure $\Lambda_b \to \Lambda_c^+ \mu^- \nu_\mu$ differential BF \to form-factor shape.

- Measure yield of $\Lambda_b \rightarrow \Lambda_c^+ \mu^- \nu_\mu$ in 14 bins of 1 < w < 1.43.
- Take lower q^2 solution.
- Correct for selection efficiency.
- Correct for feed-down from $\Lambda_c^{*+} \to \Lambda_c^+ \pi^+ \pi^-$ extracted from data.
- Unfold w resolution.

Angular analyses?

If the tension persists we can learn more about new physics with angular and kinematic variables.

- BaBar has compared q² with theory: PRD 88, 072012 (2013)
- Belle has measured τ polarisation: PRL 118, 211801 (2017)
- Unfolding needs careful consideration at LHCb.

Theoretical uncertainties

Bigi, Gambino, Schacht: PLB 769, 441-445 (2017) Grinstein, Kobach: PLB 771, 359-364 (2017)

More data needed \rightarrow new Belle result!

Hadronic $R(D^*)$ - kinematics

Two-fold ambiguity in determing τ momentum:

$$|p_{\tau}| = \frac{(m_{3\pi}^2 + m_{\tau}^2) |p_{3\pi}| \cos \theta_{\tau,3\pi} \pm E_{3\pi} \sqrt{(m_{\tau}^2 - m_{3\pi}^2)^2 - 4m_{\tau}^2 |p_{3\pi}|^2 \sin^2 \theta_{\tau,3\pi}}}{2(E_{3\pi}^2 - |p_{3\pi}|^2 \cos^2 \theta_{\tau,3\pi})}$$

where $\theta_{\tau,3\pi}$ is the angle between the 3π system 3-momentum and the τ flight. Take maximum allowed angle:

$$heta_{ au,3\pi}^{max} = rcsin\left(rac{m_{ au}^2-m_{3\pi}^2}{2m_{ au}\left|p_{3\pi}
ight|}
ight)$$

Same for *B* momentum where Y represents the $D^{*-}\tau^+$ system:

1

$$|p_{B^{0}}| = \frac{(m_{Y}^{2} + m_{B^{0}}^{2})|p_{Y}|\cos\theta_{B^{0},Y} \pm E_{Y}\sqrt{(m_{B^{0}}^{2} - m_{Y}^{2})^{2} - 4m_{B^{0}}^{2}|p_{Y}|^{2}\sin^{2}\theta_{B^{0},Y}}}{2(E_{Y}^{2} - |p_{Y}|^{2}\cos^{2}\theta_{B^{0},Y})}$$

with:

$$heta_{B^0,Y}^{max} = \arcsin\left(rac{m_{B^0}^2 - m_Y^2}{2m_{B^0}\left|p_Y
ight|}
ight)$$

Muonic $R(D^*)$ - uncertainties

PRL 115, 111803 (2015)

Table 1: Systematic uncertainties in the extraction of $\mathcal{R}(D^*)$.

Model uncertainties	Absolute size $(\times 10^{-2})$
Simulated sample size	2.0
Misidentified μ template shape	1.6
$\overline{B}{}^0 \to D^{*+}(\tau^-/\mu^-)\overline{\nu}$ form factors	0.6
$\overline{B} \to D^{*+} H_c (\to \mu \nu X') X$ shape corrections	0.5
$\mathcal{B}(\overline{B} \to D^{**}\tau^-\overline{\nu}_\tau)/\mathcal{B}(\overline{B} \to D^{**}\mu^-\overline{\nu}_\mu)$	0.5
$\overline{B} \to D^{**} (\to D^* \pi \pi) \mu \nu$ shape corrections	0.4
Corrections to simulation	0.4
Combinatorial background shape	0.3
$\overline{B} \to D^{**} (\to D^{*+} \pi) \mu^- \overline{\nu}_{\mu}$ form factors	0.3
$\overline{B} \to D^{*+}(D_s \to \tau \nu) X$ fraction	0.1
Total model uncertainty	2.8

$R(D^*)$ average

$\Lambda_b \rightarrow \Lambda_c$ form-factor PRD 96, 112

 $\Lambda_b \rightarrow \Lambda_c^+ \mu^- \nu_\mu$ decay described by 6 FF.

• Take infinite heavy quark mass \rightarrow Isgur-Wise function $\xi_B(w)$

$$w = v_{\Lambda_b} \cdot v_{\Lambda_c^+} = (m_{\Lambda_b}^2 + m_{\Lambda_c}^2 - q^2)/2m_{\Lambda_b}m_{\Lambda_c^+}$$

• Differental decay rate:

$$\frac{d\Gamma}{dw} = GK(w)\xi_B^2(w)$$

G is a constant, K(w) is a known kinematic factor. Parametrise $\xi_B(w)$, i.e. with Taylor expansion:

$$\xi_B(w) = 1 - \rho^2(w-1) + \frac{1}{2}\sigma^2(w-1)^2 + \dots$$

