

Hadronic B Decays at Belle

Tristan Bloomfield On Behalf of Belle Collaboration 2019/09/18

Contents

- Introduction
- Recent results
 - Measurement of the B and CP asymmetry in $B^0 \rightarrow \overline{D^0} \pi^0$ and $B^+ \rightarrow \overline{D^0} \pi^+$ decays. *NEW*
 - Measurement of branching fraction and final-state asymmetry for the $B^0 \rightarrow K^- \pi^+ K_s$ decay. Phys. Rev. D 100, 011101 (2019)
 - Evidence of the decay $B^0 \rightarrow p\bar{p}\pi^0$. Phys. Rev. D 99, 091104 (2019)
 - Study of $B \to p\bar{p}\pi\pi$ *NEW*
- Summary

Signal Reconstruction

- Charged particles from hadron ID and tracking.
- Neutral particles from decays:
 - $\pi^0 \rightarrow \gamma \gamma$, pairs in ECL.

$$- K_S \to \pi^+ \pi^-$$

• Kinematic va<u>riables for fi</u>tting:

$$M_{bc} = \sqrt{E_{Beam}^2 - p_B^2}, \qquad \Delta E = E_B - E_{Beam}$$

Continuum Suppression

- $e^+e^- \rightarrow q\overline{q}$ $(q \in u, d, s, c)$ dominant background. ~3 times $e^+e^- \rightarrow \Upsilon(4S)$ cross-section.
- Discriminate using event topology.
- Modified Fox-Wolfram moments

$$R_2 = \frac{\sum_{i,j} |p_i| |p_j| P_2(\cos \theta_{i,j})}{\sum_{i,j} |p_i| |p_j|}$$

- Combine with other variables in artificial neural network.
- Transform to fit:

$$C_{NN}' = \log(\frac{C_{NN} - C_{NN}^{cut}}{C_{NN}^{\max} - C_{NN}})$$

KEST PDF for 2D MC based models

- Kernel density estimation models dataset by superposition of kernel function (Gaussian) for each datapoint.
- Use adaptive bandwidth to adjust Gaussian width based on local event density.
- Retains information in high density areas while smoothing low density.

Hadronic B Decays at Belle, PIC2019

7

$B^0 \to \overline{D^0} \pi^0$ and $B^+ \to \overline{D^0} \pi^+$

• $b \rightarrow c \overline{u} d$ decay.

THE UNIVERSITY OF

• No penguin as final state quark different flavour \Rightarrow expect no A_{CP} .

Colour suppressed Previous results:

- Belle: $\mathfrak{B} = (2.25 \pm 0.14 \pm 0.35) \times 10^{-4}$ PRD 74, 092002 (2006)
- Babar: $\mathfrak{B} = (2.69 \pm 0.09 \pm 0.13) \times 10^{-4}$

PRD 84(3), 112007 (2011)

 A_{CP} is unmeasured.

V_{cb} $R^+ \rightarrow D^0 \pi^+$ Colour favour, \mathfrak{B} is $\mathcal{O}(10)$ higher. Previous results: Belle: $\mathfrak{B} = (4.34 \pm 0.10 \pm 0.23) \times 10^{-3}$ PRD 97(1), 012005 (2018) Babar: $\mathfrak{B} = (4.90 \pm 0.07 \pm 0.22) \times 10^{-3}$ PRD 75, 031101 (2007) Belle: $A_{CP} = (-0.8 \pm 0.8)\%$ PRD 73, 051106 (2006) LHCb: $A_{CP} = (-0.6 \pm 0.5 \pm 1.0)\%$ PLB 723, 4453 (2013)

Preliminary

 V_{ud}^{\star}

Preliminary

- Both commonly used control mode in other analysis, allow for high-precision validations of techniques.
 - Important for Belle II precision frontier.
- $B^0 \rightarrow \overline{D^0} \pi^0$ notably large non-factorisable components.
 - $\mathfrak{B} \gg$ 'naïve' factorisation predictions.
 - Constraints for models of final state interactions
 - SCET, pQCD

 $\mathfrak{B} = (4.53 \pm 0.02 \pm 0.14) \times 10^{-3}$ ~1.7x improvement in $A_{CP} = (0.19 \pm 0.36 \pm 0.57)\%$ precision

 $\mathfrak{B} = (2.69 \pm 0.06 \pm 0.09) \times 10^{-4}$ Most precise measurement in this channel $A_{CP} = (0.10 \pm 2.05 \pm 1.22)\%$ First measurement in this channel

9/17/2019

Y.-T. Lai et al. Phys. Rev. D 100, 011101 (2019)

 $b \rightarrow d$ penguin

- Decays with even number of kaons suppressed in SM.
 - Sensitive to CP violation localized in the phase space
- $b \rightarrow d$ penguins sensitive to NP
- Related $B^+ \to K^+ K^- \pi^+$ shows evidence of large CPV localised in low M_{KK} region.
- BaBar study hints at excess in low $M_{K^-\pi^+}$ and $M_{K^-K_S}$ region
 - large asymmetric helicity angle distribution.

d

d

 $\rightarrow K^{-}\pi^{+}K_{s}$ Results BELLE THE UNIVERSITY OF

- $b \rightarrow c$ background rejected with charm veto.
- Model peaking from particle misID $(K^-K^+K_s, \pi^-\pi^+K_s)$
- 3D Unbinned maximum likelihood fit for yield and A_{CP} .

$$\begin{aligned} \text{Yield} &= 489.98^{+45.8}_{-45.1} \\ \mathfrak{B} &= (3.60 \pm 0.33 \pm 0.15) \times 10^{-6} \\ A_{CP} &= (-8.5 \pm 8.9 \pm 0.2)\% \end{aligned}$$

 $\rightarrow K^{-}\pi^{+}K_{s}$ Results THE UNIVERSITY OF

Dalitz variables are recovered using $_{s}\mathcal{P}lot$. Some hints of peaking structure is observed at $M_{K^-K_S} < 1.5 \ GeV/c^2$. Consistent with Babar result.

BELLE

B. Pal et al. Phys. Rev. D 99, 091104 (2019)

- Charmless baryonic B-decays also proceed via V_{ub} and FCNC Penguin processes.
- Baryonic decays with neutral particles rarely studied.
- 2body < 3body < 4body
- Threshold effect: B meson decay prefer di-baryon pair + fast recoil meson
 - Why?

 $\rightarrow p\bar{p}\pi^0$ Result

THE UNIVERSITY OF **MELBOURNE**

Yield = 40.5 ± 14.2 events $\mathfrak{B} = (5.0 \pm 1.8 \pm 0.6) \times 10^{-7}$ 3.1σ significance First Evidence for this decay

 $_{s}\mathcal{P}lot$ NIM A 555, 356(2005) used to extract distributions as function of m_{pp} . Threshold enhancement shown as expected.

9/17/2019

Preliminary

- $B^+ \rightarrow p\bar{p}K^+$ shows angular asymmetry between *K* and \bar{p} in $p\bar{p}$ rest frame.
- Opposite asymmetry shown in $B^+ \rightarrow p\bar{p}\pi^+$.
- Most baryonic B decays studied are $b \rightarrow s$.
- Need more information on $b \rightarrow u$ for theory investigation.
- Inclusive $B^0 \rightarrow p\bar{p}\pi^+\pi^-$ by LHCb (PRL 113, 141801 (2014)) shows a hint of $p\bar{p}\rho$ structure.

Indication of ρ structure in $M_{\pi\pi}$.

Conclusion

First measurement of A_{CP} Highest precision \mathfrak{B} .

Most precise measurement by almost 2x.

Excess observed in low $M_{K^-K_S}$ region.

First Observation of this decay

B order of mag smaller than prediction

 $B^0 \rightarrow \overline{D^0} \pi^0$: Preliminary $\mathfrak{B} = (2.69 \pm 0.06 \pm 0.09) \times 10^{-4}$ $A_{CP} = (0.10 \pm 2.05 \pm 1.22)\%$ $B^+ \rightarrow D^0 \pi^+$: Preliminary $\mathfrak{B} = (4.53 \pm 0.02 \pm 0.14) \times 10^{-3}$ $A_{CP} = (0.19 \pm 0.36 \pm 0.57)\%$ $B^0 \to K^- \pi^+ K_s$: Phys. Rev. D 100, 011101 (2019) $\mathfrak{B} = (3.60 \pm 0.33 \pm 15) \times 10^{-6}$ $A_{CP} = (-8.5 \pm 8.9 \pm 0.2)\%$ $B^0 \to p \overline{p} \pi^0$: Phys. Rev. D 99, 091104 (2019) $\mathfrak{B} = (5.0 \pm 1.8 \pm 0.6) \times 10^{-7}$ $B^0 \rightarrow p\overline{p}\pi^+\pi^-$: Preliminary $\mathfrak{B} = (0.83^{+0.18}_{-0.17} \pm 0.17) \times 10^{-6}$ $B^+ \rightarrow p\overline{p}\pi^+\pi^0$: Preliminary $\mathfrak{B} = (4.64^{+1.15}_{-1.10} \pm 0.68) \times 10^{-6}$

Thank You

Backup

π^0 Energy Correction

- Energy leakage in ECL means π^0 is measured low.
- Leads to high correlation in M_{BC} and ΔE .
- Calculate M_{BC} assuming $E_{\pi^0} = E_{beam} E_{D^0}$

Continuum Suppression Variables

09/08/2019

Wrong sign decays.

- What if $B^0 \to D^0 \pi^0$ or $\overline{D^0} \to K^- \pi^+ [\pi^0]$?
- $B^0 \to D^0 \pi^0$ suppressed by λ^2 .

$$R \equiv \frac{\mathfrak{B}_{WS}}{\mathfrak{B}_{RS}}$$

• $R(B^0 \to D^0 \pi^0) \approx R(B^0 \to D^- \pi^+) = 2.92 \times 10^{-4}$

•
$$R\left(\overline{D^0}\right) = 2.85 \times 10^{-3}$$

 $\Delta \mathfrak{B} = -0.3\%$ $\Delta A_{CP} = +3 \times 10^{-5}$

09/08/2019

Fitter

- Unbinned maximum likelihood fit in M_{BC} , ΔE and C_{NN} using RooFit for Yield and A_{CP} of each event type (signal, qq, *BB* bkg, Rare).
- 4 datasets divided by D^0 decay and Kaon charge.
- Constrained by $\overline{D^0} \to K^+ \pi^- \pi^0$: $\overline{D^0} \to K^+ \pi^-$ Yield ratio and A_{CP} .

$$- N_{K^+,2bd} = N \times (1 - A_{CP}) \times 0.5 \times (1 - R_{D^0 mode})$$

$$- N_{K^{-},2bd} = N \times (1 + A_{CP}) \times 0.5 \times (1 - R_{D^{0}mode})$$

$$- N_{K^+,3bd} = N \times (1 - A_{CP}) \times 0.5 \times (R_{D^0 mode})$$

-
$$N_{K^{-},3bd} = N \times (1 + A_{CP}) \times 0.5 \times (R_{D^{0}mode})$$

- Background A_{CP} and signal R_{D^0mode} are fixed.
- PDF shapes from Monte Carlo.

09/0

PDF Modelling

• Where possible

 $-\mathcal{P}(M_{BC},\Delta E,C_{NN})=\mathcal{P}(M_{BC})\times\mathcal{P}(\Delta E)\times\mathcal{P}(C_{NN})$

• $B\overline{B}$ and Rare background and $K^+\pi^-\pi^0$ signal have high correlation in M_{BC} , ΔE .

$$- \mathcal{P}(M_{BC}, \Delta E, C_{NN}) = \mathcal{P}(M_{BC}, \Delta E) \times \mathcal{P}(C_{NN})$$

	M _{BC}	ΔΕ	<i>C_{NN}</i> `
Signal ($\overline{D^0} \to K^+\pi^-$)	Crystal Ball fn.	Crystal Ball fn. + Gaussian	3 Gaussians
Signal $(\overline{D^0} \to K^+ \pi^- \pi^0)$	2D kernel estim PDF	3 Gaussians	
$B\overline{B}$ background	2D kernel estim PDF	3 Gaussians	
Continuum	ARGUS fn.	Chebyshev Polynomial	2 Gaussians
Rare B	2D kernel estimation (KEST) histogram PDF		3 Gaussians

KEST PDF for 2D MC based models

- Kernel density estimation models dataset by superposition of kernel function (Gaussian) for each datapoint.
- Roofit uses adaptive bandwidth to adjust Gaussian width based on local event density.
- Retains information in high density areas while smoothing low density.

Calibration Factors

- MC may not perfectly represent real data.
- Calibration mean shifts and width factors for C_{NN} .
 - Applied to $B \rightarrow \overline{D^0} \pi^0$ for data fit.
- Signal ΔE has shaped changes.
 - D^0 → $K^+\pi^-$: Mean shift and width factor floated in fit.
 - $\overline{D^0} \to K^+ \pi^- \pi^0$: New PDF Gaussian smear to ΔE .

GWM Calculations

$$\mathfrak{B} = \operatorname{mean}(\mathfrak{B}_{\overline{D^{0}} \to K^{+}\pi^{-}}, \mathfrak{B}_{\overline{D^{0}} \to K^{+}\pi^{-}\pi^{0}})$$

$$= \operatorname{mean}\left(\frac{Y_{\overline{D^{0}} \to K^{+}\pi^{-}}}{2 \times N_{B^{+}B^{-}} \times \epsilon_{\overline{D^{0}} \to K^{+}\pi^{-}}}, \frac{Y_{\overline{D^{0}} \to K^{+}\pi^{-}\pi^{0}}}{2 \times N_{B^{+}B^{-}} \times \epsilon_{\overline{D^{0}} \to K^{+}\pi^{-}\pi^{0}}}\right)$$

$$= \operatorname{mean}\left(\frac{f_{\overline{D^{0}} \to K^{+}\pi^{-}}^{S}}{2 \times N_{B^{+}B^{-}} \times \epsilon_{\overline{D^{0}} \to K^{+}\pi^{-}}}, \frac{f_{\overline{D^{0}} \to K^{+}\pi^{-}\pi^{0}}^{S}}{2 \times N_{B^{+}B^{-}} \times \epsilon_{\overline{D^{0}} \to K^{+}\pi^{-}\pi^{0}}}\right)$$

$$= \frac{Y}{2 \times N_{B^{+}B^{-}}} \times \operatorname{mean}\left(\frac{f_{\overline{D^{0}} \to K^{+}\pi^{-}}^{S}}{\epsilon_{\overline{D^{0}} \to K^{+}\pi^{-}}}, \frac{f_{\overline{D^{0}} \to K^{+}\pi^{-}\pi^{0}}^{S}}{\epsilon_{\overline{D^{0}} \to K^{+}\pi^{-}\pi^{0}}}\right),$$

•
$$\bar{x} = \sigma_{\bar{x}}^2 (J^T \Sigma^{-1} X)$$

•
$$\sigma_{\bar{x}}^2 = (J^T \Sigma^{-1} J)^{-1}$$

- Uncorrelated: *D* decay **B**, recon eff.
- Correlated: Track eff., π^0 eff., PID eff.

•
$$\Sigma_{B^0\overline{D^0}\pi^0} = \begin{bmatrix} 1.48 & 2.40\\ 2.40 & 6.77 \end{bmatrix}$$
, $\Sigma_{B^+\overline{D^0}\pi^+} = \begin{bmatrix} 1.17 & 1.05\\ 1.05 & 4.03 \end{bmatrix}$

• 2.44% for $B^0 \to \overline{D^0} \pi^0$ and 2.54% for $B^+ \to \overline{D^0} \pi^+$

Systematic Uncertainties (B)

	$B^0 ightarrow \overline{D^0} \pi^0$	$B^+ ightarrow \overline{D^0} \pi^+$
No. <i>BB</i>	1.37%	1.37%
$\mathfrak{B}(\Upsilon(4S))$	1.23%	1.17%
DCS mode correction	0.01%	0.02%
Fit bias	0.60%	0.20%
Mean efficiency	2.44%	2.54%
$\overline{D^0} \to K^+ \pi^- \pi^0 \colon \overline{D^0} \to K^+ \pi^-$ ratio	+0.31% -0.38%	$+0.19\% \\ -0.08\%$
A_{CP} detector bias (backgrounds)	0.01%	0.05%
Calibration Factors ($C_{NN}^{'}$)	0.34%	0.06%
Modified KEST signal (M_{BC} , ΔE)	0.63%	0.24%
KEST PDFs	0.58%	0.05%
Fixed Charmless $B\overline{B}$ Yields	+0.26% -0.27%	< 0.01%
Total	<u>+</u> 3.28%	±3.13 %

Measurement of \mathfrak{B} and A_{CP} in $B \rightarrow \overline{D^0} \pi^0$ decays

BELLE

Systematic Uncertainties (A_{CP})

	$B^0 ightarrow \overline{D^0} \pi^0$	$B^+ ightarrow \overline{D^0} \pi^+$
	(× 10 ⁻²)	(× 10 ⁻²)
Fit bias	0.03	0.02
$\overline{D^0}$ decay A_{CP}	0.35	0.35
A_{CP} detector bias (signal)*	0.66	0.42
A detector bies (baskgrounds)*	+0.49	+0.03
A_{CP} detector bias (backgrounds)	-0.49	-0.03
$\overline{D^0}$ $V^+ \pi^- \pi^0$ $\overline{D^0}$ $V^+ \pi^-$ ratio	+0.03	< 0.01
$D^{\circ} \rightarrow K^{\circ} n n^{\circ} : D^{\circ} \rightarrow K^{\circ} n$ Tatio	-0.02	
Calibration Factors (C'_{NN})	0.06	< 0.01
Modified KEST signal (M_{BC} , ΔE)	0.06	< 0.01
KEST PDFs	0.15	< 0.01
Fixed Charmless <i>BB</i> Yields	< 0.01	< 0.01
Total	<u>+1.22</u>	±0.57