CP violation and mixing in heavy flavor at LHCb

Jike Wang (Wuhan University)

on behalf of the LHCb Collaboration

Outline of the Talk

- Observation of CP violation in charm decays:
 - Measure CPV asymmetries in $D^0 \to K^-K^+$ and $D^0 \to \pi^-\pi^+$ decays
- Time-dependent *CP* –violating observables in $B_s^0 \rightarrow J/\psi K^- K^+$
- Time-dependent CPV measurement in $D^0 \rightarrow K^-K^+$ and $D^0 \rightarrow \pi^-\pi^+$
- Mass difference between neutral c-meson eigenstates $(D^0 \overline{D}^0)$

Observation of CP violation in charm decays

- Observation of CPV in the charm sector has not been achieved yet, despite decades of experimental searches.
- Charm hadrons provide an unique opportunity to measure CPV, with particles containing only up-quarks

The first observation of CPV in the decay of charm hadrons

- Measurement of CP-violating asymmetries in $D^0 \to K^- K^+$ and $D^0 \to \pi^- \pi^+$ decays
- In order to identify the D^0 : - π -tagged: $D^{*+} \rightarrow D^0 \pi^+$ - μ -tagged: $\overline{B} \rightarrow D^0 \mu^- \overline{\nu}_{\mu} X$
- Define: $\Delta A_{CP} = A_{raw}(K^-K^+) A_{raw}(\pi^-\pi^+)$ to cancel production and detection asymmetries $A_{raw}^{\pi\text{-tagged}}(f) \equiv \frac{N(D^{*+} \to D^0(f)\pi^+) - N(D^{*-} \to \overline{D}^0(f)\pi^-)}{N(D^{*+} \to D^0(f)\pi^+) + N(D^{*-} \to \overline{D}^0(f)\pi^-)},$

PRL 122 (2019) 211803; 5.9 *fb*⁻¹ at 13 TeV

 $A_{\rm raw}^{\mu\text{-tagged}}(f) \equiv \frac{N(\overline{B} \to D^0(f) \,\mu^- \bar{\nu}_\mu X) - N(B \to \overline{D}^0(f) \,\mu^+ \nu_\mu X)}{N(\overline{B} \to D^0(f) \,\mu^- \bar{\nu}_\mu X) + N(B \to \overline{D}^0(f) \,\mu^+ \nu_\mu X)},$

$m(D^0\pi^+)$ and $m(D^0)$

Measurements

• The results:

$$\Delta A_{CP}^{\pi\text{-tagged}} = [-18.2 \pm 3.2 \,(\text{stat.}) \pm 0.9 \,(\text{syst.})] \times 10^{-4},$$
$$\Delta A_{CP}^{\mu\text{-tagged}} = [-9 \pm 8 \,(\text{stat.}) \pm 5 \,(\text{syst.})] \times 10^{-4}.$$

• Combine with previous measurements:

$$\Delta A_{CP} = (-15.4 \pm 2.9) \times 10^{-4},$$

- Consistent with (in magnitude at the upper end) SM
 SM: 10⁻⁴-10⁻³
 - Further measurements + possible theoretical improvements, will clarify the picture (SM or new dynamics in the up-quark sector)

Time-dependent CPV observables in $B_s^0 \rightarrow J/\psi K^- K^+$

- In decays of B_s^0 to a *CP* eigenstate, *CPV* can originate from the interference of the amplitude and that of the adjoint decay preceded by $B_s^0 \overline{B}_s^0$ oscillation.
 - It manifests itself through a nonzero value of the phase ϕ_s
- a measurement of ϕ_s different from the SM prediction would provide clear evidence for NP
- Most sensitive channel to NP is $B_s^0 \rightarrow J/\psi(\mu\mu)K^-K^+$: clean, large statistics

Time-dependent CPV observables in $B_s^0 \rightarrow J/\psi K^- K^+$

- Further combine with Run–II $B_s^0 \rightarrow J/\psi(\mu\mu)\pi^-\pi^+$ (PLB 797 (2019)).
- And Run-I $J/\psi(\mu\mu)\pi^-\pi^+$, $B_s^0 \to J/\psi K^-K^+$ for the K^-K^+ invariant mass > 1.05 GeV, $B_s^0 \to \varphi(2S)\phi$ and $B_s^0 \to D_s^+D_s^-$

$\phi_s = -0.041 \pm 0.025 \,\mathrm{rad}, \, |\lambda| = 0.993 \pm 0.010, \, \Gamma_s = 0.6562 \pm 0.0021 \,\mathrm{ps}^{-1}$

- ϕ_s is consistent with a non-zero CPV predicted within the SM and with no CPV in the interference of B_s^0 meson mixing and decay.
- $|\lambda|$ is consistent with unity, implying no evidence for direct *CPV*

EUR. PHYS. J. C 79 (2019) 706, 1.9 *fb*⁻¹ at 13 TeV

Time-dependent CPV in $D^0 \rightarrow K^- K^+$, $D^0 \rightarrow \pi^- \pi^+$

- The asymmetries of the time-dependent decay rates of D^0 , \overline{D}^0 :
 - Sensitive to CPV in the mixing and in the interference between mixing and decay $A_{\rm prim}(t)$ [%] $\chi^2/ndf = 9/19$ LHCb preliminary 0.2

0.1

-0.3

0.5

2

With 2015-2016 data:

 $A_{\Gamma}(D^0 \to K^+ K^-) = (1.3 \pm 3.5 \pm 0.7) \times 10^{-4},$ $A_{\Gamma}(D^0 \to \pi^+ \pi^-) = (11.3 \pm 6.9 \pm 0.8) \times 10^{-4}$

With 2011-2016 data, and combine both channels :

[|] Jike Wang, Wuhan University | PIC-2019 | Page 8

 $D^0 \rightarrow K^- \pi^+$

 $D^0 \rightarrow K^+ K^-$

 χ^2 /ndf = 22/19 LHCb preliminary

 t/τ_{D^0}

Mass difference between neutral c-meson eigenstates

- Unknown particles can contribute as virtual particles in the amplitude
 - Possibly enhance the average oscillation rate or the difference between the rates of mesons and antimesons $(D^0 \overline{D}^0)$.
- This makes flavor oscillations sensitive to non-SM dynamics

Yield the first evidence that the masses of the neutral charmmeson eigenstates differ

- A novel model-independent approach: the bin-flip method
 - Relies on ratios between charm decays reconstructed in similar kinematic and decay-time conditions
 - Avoiding the need for an accurate modeling of the efficiency variation across phase space and decay time.

PRL 122 (2019) 231802; 5.9 *fb*⁻¹ at 13 TeV

The analysis

- For $(D^{*+} \to D^0 (\to K_S^0 \pi^+ \pi^-) \pi^+)$:
 - The prompt sample contains 1.3×10^6 signals
 - And a small background dominated by genuine $D^0(\rightarrow K_S^0\pi^+\pi^-)$ decays associated to random soft pions

- The semileptonic sample:
 - 1.0×10^6 signals
 - And a sizable background dominated by unrelated $K_S^0 \pi^+ \pi^-$ combinations.
 - Genuine D^0 decays associated with random muons contribute <1%

| Jike Wang, Wuhan University | PIC-2019 | Page 10

Measurements

• The results:

Parameter	Value	Stat. correlations			Syst. correlations		
	$[10^{-3}]$	y_{CP}	Δx	Δy	y_{CP}	Δx	Δy
x_{CP}	$2.7 \pm 1.6 \pm 0.4$	-0.17	0.04	-0.02	0.15	0.01	-0.02
y_{CP}	$7.4 \pm 3.6 \pm 1.1$		-0.03	0.01		-0.05	-0.03
Δx	$-0.53 \pm 0.70 \pm 0.22$			-0.13			0.14
Δy	$0.6 \pm 1.6 \pm 0.3$						

- Most precise from a single experiment, as are the determinations of the CPV parameters.
- Consistent with x = 0 within 2σ ; combined with the current global knowledge, yields x = $3.9^{+1.1}_{-1.2} \times 10^{-3}$
- Strongly contributing to the emerging evidence for a nonzero (positive) mass difference
- The global constraints on CPV in the $D^0 \overline{D}^0$ system are greatly improved

Summary

- CP violation is a key physics topic at LHCb. Numerous new results are out sincd PIC 2018, only part of them are shown today.
- We have much more Run2 data to analyze, more results are coming

$m(D^0\pi^+)$ and $m(D^0)$

| Jike Wang, Wuhan University | PIC-2019 | Page 13

The analysis

