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Propagation states eventually get out of phase

• The superposition resolves as a different weak flavour
2 2019/09/16

Neutrinos are produced and detected as weak states  𝜈𝛼 = 𝜈𝑒 , 𝜈𝜇 , 𝜈𝜏
which is (very) different from propagation basis 𝜈𝑖 = 𝜈1, 𝜈2, 𝜈3

• In vacuum, propagation basis ≡ mass basis

Phill Litchfield
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For neutrinos of energy 𝐸, oscillation probabilities can be written 
(e.g. for ν𝜇 → ν𝑒):

The 𝕆𝒊𝒋 are oscillating functions

• e.g. 𝐬𝐢𝐧𝟐 Τ𝚫𝒎𝒋𝒊
𝟐𝑳 𝟒𝑬

where 𝛥𝑚𝑖𝑗
2 = 𝑚𝑖

2 −𝑚𝑗
2

Phill Litchfield

The 𝑨𝒊𝒋 are amplitudes that 
depend on a mixing matrix 𝑼𝐏𝐌𝐍𝐒

𝑃 ν𝜇 → ν𝑒 =𝑨𝒊𝒋𝕆𝑖𝑗 𝛥𝑚𝑖𝑗
2 𝐿

𝐸
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For neutrinos of energy 𝐸, oscillation probabilities can be written 
(e.g. for ν𝜇 → ν𝑒):

Phill Litchfield

𝑃 ν𝜇 → ν𝑒 =𝑨𝒊𝒋𝕆𝑖𝑗 𝛥𝑚𝑖𝑗
2 𝐿

𝐸

If the mixing matrix 𝑈PMNS is complex, it can have complex 
elements → ei𝛿. In that case:

• There will be terms where the (real) amplitudes 𝐴𝑖𝑗 ∝ sin 𝛿

• Such 𝐬𝐢𝐧𝜹 terms have opposite sign for 𝝂 / ഥ𝝂 ⇒ CP violation

Also, propagation in matter modifies both the 
amplitude (𝑨𝒊𝒋) and frequency (𝕆𝑖𝑗)

− Differently for 𝜈 and ҧ𝜈 → mimics CPv

+ Depends on whether 𝚫𝒎𝒋𝒊
𝟐 is +ive or –ive
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The ν𝑒 appearance probability can be approximated as an interfering 
sum-squared of atmospheric and solar scale terms:

where

𝑇atm = sin 2𝜃13 sin 𝜃23; 𝑇sol = sin2𝜃12 cos 𝜃23 cos 𝜃13, 

and

∆=
∆𝑚31

2 𝐿

4𝐸
∼

𝜋

2
; 𝛼 =

∆𝑚21
2

∆𝑚31
2 ≈ Τ1 32;        𝐴 = ±

2 2𝐺𝐹𝑛𝑒𝐸

∆𝑚31
2

𝑃 𝜈𝜇 → 𝜈𝑒 ≈ 𝑇atm
2 sin2 1−𝐴 ∆

1−𝐴 2 + 𝛼2𝑇sol
2 sin2 𝐴∆

𝐴2

∓2𝛼𝑇atm 𝑇sol
sin 1−𝐴 ∆

1−𝐴

sin 𝐴∆

𝐴
sin Δ sin 𝛿

+2𝛼𝑇atm 𝑇sol
sin 1−𝐴 ∆

1−𝐴

sin 𝐴∆

𝐴
cos Δ cos 𝛿

NO𝜈A: 𝐴 ~ 0.2, T2K: 𝐴 ~ 0.07



𝑈𝑃𝑀𝑁𝑆
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Mixing must be unitary; decompose in terms of  {𝑐, 𝑠}𝑖𝑗= {cos, sin} 𝜃𝑖𝑗

𝑈𝑃𝑀𝑁𝑆 =
1 0 0
0 𝑐23 𝑠23
0 −𝑠23 𝑐23

𝑐13 0 𝑠13𝑒
−𝑖𝛿

0 1 0
−𝑠13𝑒

𝑖𝛿 0 𝑐13

𝑐12 𝑠12 0
−𝑠12 𝑐12 0
0 0 1
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Mixing must be unitary; decompose in terms of  {𝑐, 𝑠}𝑖𝑗= {cos, sin} 𝜃𝑖𝑗

Historically useful: 

• 𝜈𝑒 disappearance in solar neutrinos from 𝜽𝟏𝟐
mixing and splitting 𝜟𝒎𝟐𝟏

𝟐 = 𝒎𝟐
𝟐 −𝒎𝟏

𝟐

𝑈𝑃𝑀𝑁𝑆 =
1 0 0
0 𝑐23 𝑠23
0 −𝑠23 𝑐23

𝑐13 0 𝑠13𝑒
−𝑖𝛿

0 1 0
−𝑠13𝑒

𝑖𝛿 0 𝑐13

𝑐12 𝑠12 0
−𝑠12 𝑐12 0
0 0 1



𝑈𝑃𝑀𝑁𝑆
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Mixing must be unitary; decompose in terms of  {𝑐, 𝑠}𝑖𝑗= {cos, sin} 𝜃𝑖𝑗

Historically useful: 

• 𝜈𝑒 disappearance in solar neutrinos from 𝜽𝟏𝟐
mixing and splitting 𝜟𝒎𝟐𝟏

𝟐 = 𝒎𝟐
𝟐 −𝒎𝟏

𝟐

• 𝜈𝜇 ↔ 𝜈𝜏 oscillations in atmospheric neutrinos 
from 𝜽𝟐𝟑 mixing and splitting 𝜟𝒎𝟑𝒊

𝟐

𝑈𝑃𝑀𝑁𝑆 =
1 0 0
0 𝑐23 𝑠23
0 −𝑠23 𝑐23

𝑐13 0 𝑠13𝑒
−𝑖𝛿

0 1 0
−𝑠13𝑒

𝑖𝛿 0 𝑐13

𝑐12 𝑠12 0
−𝑠12 𝑐12 0
0 0 1



𝑈𝑃𝑀𝑁𝑆
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Mixing must be unitary; decompose in terms of  {𝑐, 𝑠}𝑖𝑗= {cos, sin} 𝜃𝑖𝑗

Historically useful: 

• 𝜈𝑒 disappearance in solar neutrinos from 𝜽𝟏𝟐
mixing and splitting 𝜟𝒎𝟐𝟏

𝟐 = 𝒎𝟐
𝟐 −𝒎𝟏

𝟐

• 𝜈𝜇 ↔ 𝜈𝜏 oscillations in atmospheric neutrinos 
from 𝜽𝟐𝟑 mixing and splitting 𝜟𝒎𝟑𝒊

𝟐

It also works out that reactor neutrinos at 1km 
are sensitive to 𝜽𝟏𝟑 and 𝜟𝒎𝟑𝒊

𝟐 only

𝑈𝑃𝑀𝑁𝑆 =
1 0 0
0 𝑐23 𝑠23
0 −𝑠23 𝑐23

𝑐13 0 𝑠13𝑒
−𝑖𝛿

0 1 0
−𝑠13𝑒

𝑖𝛿 0 𝑐13

𝑐12 𝑠12 0
−𝑠12 𝑐12 0
0 0 1
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Now: precision measurement — can’t 
approximate as a single sub-matrix.

• We know fairly well what the 
mixing matrix looks like:

Phill Litchfield

𝑈PMNS
2 ≃

𝜈𝑒

𝜈𝜇

𝜈𝜏

𝜈1 𝜈2 𝜈3 𝜽𝟏𝟑 ≠ 0

𝑉CKM
2 ≃

and it’s nothing like the CKM matrix
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Now: precision measurement — can’t 
approximate as a single sub-matrix.

• We know fairly well what the 
mixing matrix looks like:

Phill Litchfield

𝑈PMNS
2 ≃

Octant degeneracy

Mass Ordering [Hierarchy]

Normal (NO) Inverted (IO)

Lower (𝜃23 < 45°) Upper (𝜃23 > 45°)

CP Violation

Complex mixing of these 4 
elements  causes

𝑃 𝜈𝛼 → 𝜈𝛽 ≠ 𝑃 ҧ𝜈𝛼 → ҧ𝜈𝛽

Key parameter: 𝜹𝑪𝑷𝜹𝑪𝑷

𝜈𝑒

𝜈𝜇

𝜈𝜏

𝜈1 𝜈2 𝜈3
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First LBL experiment was K2K.   Modern examples are very  similar.
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First LBL experiment was K2K.   Modern examples are very  similar.

Muon neutrinos created 
at proton accelerator 

Near Detector(s) 
characterise the initial 

neutrino beam

Far Detector measures 
the oscillations
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L = 295 km
Epeak =0.6 GeV

L = 810 km
Epeak =2 GeV

Next
Generation
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Basic idea: 𝝂𝝁 from pion decay.

• Pions produced in proton interactions on a target

• Secondary beam focussed by magnetic horns (NuMI/NOνA: 2, T2K: 3)

• Horn current & geometry determine (on-axis) spectrum 

• Wrong sign (𝜈) and 𝜈𝑒 backgrounds are ~ few % 

• Can reverse horn current to get 𝜈 beam, but B/G is larger

𝝅+

𝑝 𝝂𝝁
𝝁+
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Vital to understand the beam flux and the neutrino interactions
Otherwise can’t correctly interpret Far Detector data

Consensus:  

• Understanding of fluxes has steadily improved

• Modelling neutrino interactions has improved but remains difficult. 

T2K ND280

• Small scintillator target regions &TPCs 
to maximise information

• B-field to get charge sign information

• General concept:  Improve the models!

NOνA ND built the same way as FD

• Aim to minimise differences

Magnet
coil

Phill Litchfield
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T2K uses the 50 kt Super-
Kamiokande detector 

• Water-Cherenkov is mostly 
sensitive to outgoing lepton

• Excellent reconstruction of QE
(𝜈 + 𝑛 → ℓ + 𝑝) interactions

NOνA detectors use a crossed 
scintillator tracker geometry.

• FD around 14kt

• Reconstruct non-QE events 
using calorimetry for hadronic 
shower 

Phill Litchfield
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T2K makes a tunable MC model,with a large number of parameters 
adjusting the flux and cross-section.

• Variations are sampled according to how well they fit the ND280 data 
samples (likelihood score) × prior constraints

[Some parameters (e.g. SK detector effects) will only have a prior]  

The ND280-consistent ensemble is used to provide a prediction 
of the spectrum at SK, with systematic errors

1R-𝜇(𝜈)
sample

1R-𝜇(𝜈)
sample

1R-𝑒 𝜈
sample

Before
After

fit to ND280 

O
sc

ill
at

io
n

 in
cl

u
d

e
d
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𝝂𝒆

Fuzzy
Ring

𝝂𝝁

Sharp 
Ring

1R-𝒆

1R-𝒆 + d.e.

1R-𝝁
Disappearance of 𝝂𝝁 constrains the parameters

𝚫𝒎𝟑𝒊
𝟐 and 𝜽𝟐𝟑 [up to a degeneracy around 0.5]

Appearance of 𝝂𝒆 sensitive to 𝜽𝟏𝟑, 𝜟𝒎𝟑𝒊
𝟐 & 𝜽𝟐𝟑.

But primary use is to measure 𝜹𝐂𝐏 and look for 
CPV  

𝜈𝑒 − 𝜈𝑒 rate 
asymmetry should be 
proportional to 
𝐬𝐢𝐧 𝜹𝐂𝐏

New sample with a late 
decay electron 
corresponds to:
𝜈𝑒 + 𝑛 → Δ+

→ 𝑒− + 𝑛 + 𝜋+

𝝂 from 𝝅−𝝂 from 𝝅+
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1R-𝝁 (𝝂)

1R-𝒆 (𝝂)1R-𝒆 (𝝂)

1R-𝒆 (𝝂) with d.e.

𝜈𝜇 data is analysed 
as a function of 𝐸𝜈

𝜈𝑒 data is analysed 
as a function of 𝐸𝜈
and 𝜃𝑒𝜈

1R-𝝁 (𝝂)
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/10−3

T2K alone

*Uses 𝜈𝜇 data; marginalises over relevant parameters

T2K interval in 𝐬𝐢𝐧𝟐 𝜽𝟏𝟑 – 𝜹𝐂𝐏
plane is intersection of S-curves

• One curve for 𝜈 mode, 
another for ҧ𝜈 mode

• Inverted Ordering needs 
slightly larger 𝐬𝐢𝐧𝟐 𝜽𝟏𝟑
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T2K + Reactors

/10−3

T2K interval in 𝐬𝐢𝐧𝟐 𝜽𝟏𝟑 – 𝜹𝐂𝐏
plane is intersection of S-curves

• One curve for 𝜈 mode, 
another for ҧ𝜈 mode

• Inverted Ordering needs 
slightly larger 𝐬𝐢𝐧𝟐 𝜽𝟏𝟑

𝜹𝐂𝐏 constraint then improved 
by intersection with reactor value.

• More tension in Inverted Ordering, leading to stronger than expected 
preference for Normal Ordering
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𝚫𝒎𝟑𝟐
𝟐 , 𝐬𝐢𝐧𝟐 𝜽𝟐𝟑 results mostly 

dependent on the 𝜈𝜇/ 𝜈𝜇 data.

Low observed/expected ratio so 
expect maximal disappearance…

• This happens for sin2 𝜃23 ≃0.51
∴ small preference for Upper
octant from disappearance alone

• But larger values of 𝐬𝐢𝐧𝟐 𝜽𝟐𝟑 also enhance
appearance rates and improve fit to 𝜈𝑒 appearance.



2𝜎 C.L.

𝛿CP
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• Marginalise over everything except 𝛿CP

• Compare to critical values from toys

• Exclude CP conservation at > 2𝜎 C.L.

• Inverted ordering only just < 2𝜎 C.L. 

Stronger than expected

• In toy experiments at best fit, 
2𝜎 exclusion of 𝛿 = {0, 𝜋}
occurs in 25% of cases
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𝜈

Uses a modern Convolutional Visual Network

• Acts on hits directly

• Effectively recognises regions dominated by different kinds of activity

• Then classifies based on distribution of such regions

Phill Litchfield

𝝂𝒆 event

𝝁-like 
regions

EM-like 
regions

Hadronic
regions
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𝜈
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NOνA relies on a ‘free’ prediction of FD spectrum from ND data

• All ND deviations from nominal MC are mapped to the FD prediction

• Validity rests on similarity of the two detectors

• MC model still matters because of “Reco  True” conversions



𝜈
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𝝂𝒆

𝜈𝜇 events analysed in
4 bins of energy 
resolution

• 𝐸𝜇/(𝐸𝜇 + 𝐸had)

[muons have 
better resolution]

Exposure* for 𝜈𝑒 is 
~40% higher than 𝜈𝑒

Significance of 𝜈𝑒
appearance is 4.4𝜎

𝝂𝝁

30 2019/09/16

𝝂𝝁

𝝂𝒆

* POT × FD mass
(Started with partial FD)
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Results consistent with T2K

• Weak preference for non- maximal 
disappearance

• Preference for Upper Octant
(𝐬𝐢𝐧𝟐 𝜽𝟐𝟑 > 0.5) and 
Normal Ordering

Phill Litchfield
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For NOνA, joint interval in 
𝜹𝐂𝐏 – 𝜽𝟐𝟑 space is quite complicated

• 𝜹𝑪𝑷 – 𝜽𝟏𝟑 space is less fun simpler

• NOνA always incorporates 
reactor constraint

Best fit is very close to CP conserving, but 
all values are consistent <1𝜎

Some 𝜹𝐂𝐏 preference if Lower Octant or 
Inverted Ordering is assumed. 

• But not the same in both cases

Phill Litchfield
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[This is not how analyses are done]

But In T2K, 𝜹𝑪𝑷 is independent of other 
factors  because data is ‘extreme’

NOνA data is more central so conclusion 
about 𝜹𝑪𝑷, MO and octant are coupled.

Phill Litchfield
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T2K and NOνA data both have 
some preference in the binary 
choices:  

• Mass ordering  𝐬𝐢𝐠𝐧 𝚫𝒎𝟑𝟏
𝟐

• Octant  𝐬𝐢𝐠𝐧 𝜽𝟐𝟑 − 𝝅/𝟒

• Both have similar level and 
pattern [just a coincidence]

T2K uses Bayes Factors, which 
are not strictly comparable to  
Frequentist statements

A Bayes Factor of ~10 would be 
termed “strong” , & is roughly 
equivalent to the common 
“p < 0.05; significant” 
criterion.

T2K Lower Upper Sum

Normal 0.184 0.705 0.889

Inverted 0.021 0.090 0.111

Sum 0.205 0.795

NOvA Lower Upper

Normal >1.6𝜎 Prefer

Inverted >2.0𝜎 >1.8𝜎
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T2K and NOνA are still running

Both hope to be able to make 3𝜎-level 
statements:

• T2K focussing on CP violation
 Plot for 𝜹𝑪𝑷 = −𝜋/2

• NOνA focussing on Mass Ordering

Both planning to run until ~2025

• T2K(-II) incorporates continuous 
increases to beam power 
(0.5  1.3MW)

Phill Litchfield
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All-new experiment at FNAL.

• L ~ 1300 km baseline to Sanford

• Up to 4× 10kt Liquid Argon detectors

• Wide-band beam [1 ~ 4 GeV] allows 
mapping of a full oscillation period
• Separate CP effects and MO by 

different E dependence

• Precision measurement of 𝜹𝑪𝑷

Phill Litchfield

Proto-DUNE
Run 5144, Event 
47293 [@ 7 GeV]

Liquid Argon detectors have 
potential for very detailed 
reconstruction 

ProtoDUNE-SP events @ 1 GeV
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Like Super-Kamiokande, but ~8×
bigger, + improved detectors.

• ~800 𝜈𝑒 or ~250 𝜈𝑒 events per year

• CPC excluded at 3𝝈 (5𝝈) for 76% 
(57%) of values

MO also possible with atmos. 𝜈
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Extension to use same J-PARC beamline at a longer baseline

• Measurement centred on 2nd maximum at ~1100km
• Site choice allows either wide-band or Kamioka-like flux  (1.5° or 2.2° OA) 

• CPV grows with baseline – compensates for 1/𝐿2 statistics

• Systematic errors do not grow, so effectively supressed by factor ~3

• Precision on 𝜹𝑪𝑷 and validation of PMNS model



Dune CDR
(optimised)

𝛿CP

40 2019/09/17

Different optimisation to discovery 
of CP violation (sin 𝛿 ≠ 0)

• Discovery just needs sensitivity to 
𝐬𝐢𝐧 𝜹 terms 

• Precision at large sin 𝛿 requires 

sensitivity to 
d𝑃

d𝛿
→ 𝐜𝐨𝐬𝜹 terms

The easier it is to discover 𝜹 ≠ 𝟎,
the harder it will be to measure it.

Measuring the appearance spectrum 
is necessary.  Need 

• High statistics (T2HK) and/or broad L/E range (DUNE, T2HK-Korea)
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Octant degeneracy

Lower (𝜃23 < 45°) Upper (𝜃23 > 45°)
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T2K and NOνA data both prefer
Upper Octant and Normal Ordering

T2K data also point to a large CP 
violating effect (𝛿 ~ 3𝜋/2)

If [UO, NO] 
NOνA has no preference on 𝛿

More data still to come.  T2HK(-K) 
and DUNE should be definitive

+ Precision on leptonic CP 𝛿

+ Start testing the PMNS(-only) model

Phill Litchfield
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The ν𝑒 appearance probability can be written approximately as a sum of 
terms quadratic in the small parameters 𝛼 = Τ∆𝑚21

2 ∆𝑚31
2 ≈ Τ1 32, and 

sin 2𝜃13:

where

𝑇𝜃𝜃 = sin2𝜃23, 𝑇𝛼𝛼 = cos2 𝜃23 sin
22𝜃12, 

𝑇𝛼𝜃 = cos 𝜃13 sin 2𝜃12 sin 2𝜃23

and ∆=
∆𝑚31

2 𝐿

4𝐸
~

𝜋

2
at 1st osc. maximum. 

𝑃 ν𝜇 → ν𝑒 ≈ 𝑇𝜃𝜃sin
22𝜃13

sin2 1−𝐴 ∆

1−𝐴 2 + 𝑇𝛼𝛼𝛼
2 sin

2 𝐴∆

𝐴2

+ 𝑇𝛼𝜃𝛼 sin 2𝜃13
sin 1−𝐴 ∆

1−𝐴

sin 𝐴∆

𝐴
cos 𝛿 + ∆

𝐴 = ± ൗ2 2𝐺𝐹𝑛𝑒𝐸 ∆𝑚31
2 is the matter density 

parameter; NO𝜈A: 𝐴 ~ 0.2, T2K: 𝐴 ~ 0.07
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First LBL experiment was K2K.   Modern examples are very  similar.
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First LBL experiment was K2K.   Modern examples are very  similar.

Neutrinos created at 
proton accelerator 
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First LBL experiment was K2K.   Modern examples are very  similar.

Neutrinos created at 
proton accelerator 

Near Detector(s) 
characterise the initial 

neutrino beam
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First LBL experiment was K2K.   Modern examples are very  similar.

Neutrinos created at 
proton accelerator 

Near Detector(s) 
characterise the initial 

neutrino beam

Far Detector measures 
the oscillations
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T2K and NOνA both put their far detectors off-axis

Relativistic kinematics  at a small angle to the beam axis, neutrino 
energy is insensitive to parent pion energy.

50 2019/09/16

Gives narrower flux peak, 
and drastically reduces high 
energy tail.

• Ideal for 𝜈𝑒 appearance (reduced NC BG)

• Also helps reach lower energies with existing NuMI beam line (NOνA)
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Quasi-elastic events are ideal for T2K

• Dominant channel at this energy 

Can’t entirely ignore the nucleus:

• Nucleons in nuclei are not at rest: 
‘Fermi Gas / Spectral Function’

• Form factors are modified in 
nuclear medium: ‘Random Phase 
Approximation’
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Other processes are important as well.

Nucleus is not just a bag of independent 
nucleons; sometimes you hit a correlated pair.  
‘2p-2h’  

Can also produce a pion off the nucleus.

• Dominated by 𝑊 +𝑁 → Δ(1232) → N + 𝜋

• Other resonances are available!

• Non-resonant production available

• ‘Rein–Sehgal model’  [Future ‘MK-Model’] 
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In all of the previous processes, 
the hadron(s) must also leave 
the nucleus.  

There is a non-zero chance of 
reinteraction. Many possible 
fates for such re-interacting 
particles. ‘Final State 
Interactions’

Can both increase or decrease 
the number of visible particles 
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For NOνA, joint interval in 
𝛿CP – 𝜃23 space is quite complicated.

• 𝛿CP – 𝜃13 space is much simpler 

• NOνA always incorporates 
reactor constraint

Best fit is very close to CP conserving, but 
all values are consistent <1𝜎 (if NH,UO)

Slight preferences w.r.t. the other 
open questions:
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Normal Inverted

Upper Preferred >1.8𝜎

Lower >1.6𝜎 >2.0𝜎
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With reactor constraintWithout reactor constraint

68%

90% of posterior

95.4%


