Reactor Experiment for Neutrino Oscillation

"Measurements of the Neutrino Mixing Angle θ_{13} "

K.K. Joo Chonnam National University (On behalf of RENO collaboration)

September 18, 2019

Physics in Collision 2019 @NTU, Taipei

Outline

- Brief introduction of neutrino mixing angles
- RENO introduction and data taking status
- Latest results from RENO
 - θ_{13} & spectral analysis for Δm_{ee}^{-2}
 - Reactor antineutrino flux and spectrum, 5 MeV access
 - Fuel-composition dependent reactor neutrino yield
 - Measurement of absolute reactor neutrino flux and spectrum
 - Results from n-H IBD analysis
- Summary

[Note] RENO results mainly will be reviewed

(even if Daya Bay, Double Chooz may attend here)

Neutrino Mixing Angles

All these imply that "Neutrino has mass". "Established three-flavor mixing framework"

Reduction of reactor neutrinos due to oscillations

□ $\sin^2 2\theta_{13} > 0.01$ with 10 t •14GW •3yr ~ 400 t•GW•yr (400 t•GW•yr: a 10(40) ton far detector and a 14(3.5) GW reactor in 3 years)

Reactor Neutrinos

Reactor Neutrinos

Cost-free, intense, low-energy & well-known neutrino source !

Nuclear Power Plants

Neutrino Physics with Reactor

1956 Discovery of (anti)neutrino

2003 Observation of reactor neutrino oscillation $(\theta_{12} \& \Delta m_{21}^2)$ Inner Detector Outer Detector 0 0 0 0 Liquid Water Scintilalto Plastic Balloon Mineral PMT **KamLAND**

2012 Measurement of the smallest mixing angle θ_{13}

Reactor θ_{13} Experiments

Start 2006, Completion 2011

RENO at Yonggwang, Korea

RENO Collaboration

8 institutions and **35** physicists in Korea

- Chonnam National University
- Dongshin University
- GIST
- KAIST
- Kyungpook National University
- Seoul National University

- Total cost : \$10M
- Start of project : 2006
- The first experiment running with both near & far detectors since Aug. 2011

YongGwang Nuclear Power Plant

- Located in the west coast of southern part of Korea
- ~300 km from Incheon international airport (~2 hrs from Taoyuan airport, Taipei)
- 6 reactors are lined up in roughly equal distances and span ~1.3 km
- □ Total average thermal output ~16.7GW_{th}

YongGwang(靈光): = glorious[splendid] light (~spirited) New name: Hanbit

Experimental Layout

Daya Bay

Double Chooz

8 detectors + 3 power plants

Most powerful nuclear power complexes in the world! 2 detectors + 2 reactors

- Inner PMTs: 354 10" PMTs
 - solid angle coverage = ~14%
- Outer PMTs: ~ 67 10" PMTs

Target : 16.5 ton Gd-LS

(R=1.4m, H=3.2m)

- Gamma Catcher : 30 ton LS
 - (R=2.0m, H=4.4m)
- Buffer : 65 ton mineral oil (MO)
 - (R=2.7m, H=5.8m)
- Veto : 350 ton water (R=4.2m, H=8.8m)

total ~460 tons

Daya Bay

Double Chooz

 Conceptually the same detector design & layout are used for all 3 experiments (DB, DC, RENO)

Detection of Reactor Antineutrinos

 \Box Use inverse beta decay ($\overline{v}_e + p \rightarrow e^+ + n$) reaction process **Prompt part:** subsequent annihilation of the positron to two 0.511MeV γ **Delayed** part: neutron is captured ~200µs w/o Gd ~ 30µs w Gd Gd has largest n absorption cross section & emits high energy γ Signal from neutron capture ~2.2MeV w/o Gd ~ 8MeV w Gd Measure prompt signal & delayed signal "Delayed coincidence" reduces backgrounds drastically

Coincidence of Prompt and Delayed Signals

RENO Data-taking Status

New Results from RENO

■ Precise measurement of |∆m_{ee}² | and θ₁₃ using ~2200 days of data (Aug. 2011 – Feb 2018)

"Measurement of Reactor Antineutrino Oscillation Amplitude and Frequency at RENO" " → Published in PRL (Phys. Rev. Lett. 121, 201801 (2018))

■ Fuel-composition dependent reactor antineutrino yield → "Fuel-composition dependent reactor antineutrino yield and spectrum at RENO" → Published in PRL (Phys. Rev. Lett. 122, no.23, 232501 (2019))

Independent measurement of θ₁₃ and |∆m_{ee}² | with delayed n-H signals (using ~500 days of data)

 \rightarrow Prepared for paper & will be submitted soon

Observed Delayed Signal (n-Gd)

Measured Spectra of IBD Prompt Signal

Clear excess at 5 MeV (persistent from the first result)

Near Live time = 1807.88 days # of IBD candidate = 850,666# of background = 17,233 (2.0 %) Far Live time = 2193.04 days # of IBD candidate = 103,212 # of background = 4,879 (4.8 %)

Backgrounds

- Accidental coincidence between prompt and delayed signals
- Fast neutrons produced by muons, from surrounding rocks and inside detector (n scattering : prompt, n capture : delayed)
- ⁹Li/⁸He β-n followers produced by cosmic muon spallation

Reduction of Background Rates & Uncertainties

Allows precise measurements of $\sin^2 2\theta_{13}$ and Δm^2_{ee}

- Accidentals : additional cuts and improved flashing-PMT removal algorithms
- Cosmogenic ⁹Li/ ⁸He : optimized muon veto criteria
- ²⁵²Cf contamination : improved multiple-neutron removal algorithms

Observed Daily Averaged IBD Rate

- Good agreement with observed rate and prediction
- Accurate measurement of thermal power by reactor neutrinos
- Any change of reactor condition can be monitored

The 5 MeV Excess is there !

RENO

Double Chooz

Daya Bay

In 2014, RENO showed that the 5 MeV excess is from reactor neutrinos @Boston

DC & DB also observed the same 5 MeV excess

Correlation of 5 MeV Excess with Reactor Power

Correlation of 5 MeV excess with ²³⁵U isotope fraction

- ²³⁵U fraction corresponds to freshness of reactor fuel
- 2.9σ indication of 5 MeV excess coming from ²³⁵U fuel isotope fission

Far/Near Shape Analysis

Energy-dependent disappearance of reactor antineutrinos

 $\sin^{2}2\theta_{13} = 0.0896 \pm 0.0048(\text{stat.}) \pm 0.0047(\text{syst.}) \qquad (\pm 7.6\%)$ $|\triangle m_{\text{ee}}^{2}| = 2.68 \pm 0.12(\text{stat.}) \pm 0.07(\text{syst.}) (\times 10^{-3} \text{ eV}^{2}) \qquad (\pm 5.2\%)$

Observed L/E Dependent Oscillation

- Data follows exactly curve
- Clear energy-dependent disappearance of reactor antineutrinos

RENO : Plan and Prospects

Daya Bay : Outlook & News

(@NUFACT2019)

JUNO (Jiangmen Underground Neutrino Observatory) Main goal: Mass Hierarchy (MH)

Have recently updated many results and released some new ones:

Latest oscillation results $\sin^2 2\theta_{13} = 0.0856 \pm 0.0029$ $|\Delta m_{ee}^2| = (2.522^{+0.068}_{-0.070}) \times 10^{-3} \text{ eV}^2$ **3.4% 2.8%**

- + high-statistics absolute reactor antineutrino flux and shape measurements and evolution with fuel composition, searches for new physics, ... etc.
- Daya Bay will run until 2020 and produce many other important results:
 - New oscillation measurement with sin²20₁₃ uncertainty below 3%
 - Results from campaign to study liquid scintillator recipes and purification methods with EH1-AD1, which was dedicated permanently to this purpose
 - Other measurements in preparation including:
 - New unfolded reactor antineutrino spectrum
 - Improved measurement of θ_{13} and $\Delta m^2{}_{ee}$ via neutron capture on H
 - Search for v signals coincident with gravitational wave events

High power nuclear power plants (26.6 GW total power)

Double Chooz : Summary

- Three years of Double Chooz data with two detectors: 2015 2017
- Novel IBD selection : Total Neutron Capture (H+Gd+C)
 - Improved statistics
- Good background control (S/B > 10)
 - Background model confirmed with reactor off data
 - ~25 days reactor off data in the final dataset
- New result based on 15 month of data:

sin²2θ₁₃=0.105± 0.014

Spectral distortion investigation

Most precise mean cross section per fission results to date:

 $\langle \sigma_f \rangle = 5.71 \pm 0.06 \cdot 10^{-43} cm^2 / fission$

- Double Chooz is unfortunately decommissioned
- Analyze the remaining data increase statistics
- Improve systematics by proton number calibration during dismantling

See also: arXiv:1901.09445 [hep-ex]

(@NUFACT2019)

Comparison of θ_{13} and $|\Delta m^2_{ee}|$

Motivation for the study of fuel composition dependent reactor antineutrino yield

Reactor Antineutrino Anomaly

- ~6% deficit of measured reactor neutrino flux compared to the prediction with new predicted flux evaluation in 2011 by Huber and Mueller.
- Deficit of observed reactor neutrino fluxes relative to the prediction (Huber + Mueller model) indicates an overestimated flux or possible oscillation to sterile neutrinos.

The possibility that reactor anomaly is due to miscalculation of one or more of the ²³⁵U, ²³⁹Pu, ²³⁸U and ²⁴¹Pu antineutrino fluxes is investigated by observing fuel-composition dependent variation of reactor antineutrino yield and spectrum.

C. Giunti, Phys. Lett. B 764, 145 (2017)

F. P. An et al. (Daya Bay Collaboration), PRL 118, 251801 (2017)

• RENO Collaboration, Phys. Rev. Lett. 122, no.23, 232501 (2019)

Evolution of Fuel Isotope Composition Fraction

Average fission fraction f_{235} : f_{239} : f_{238} : f_{241} = 0.573 : 0.299 : 0.073 : 0.055

- Study on fuel dependent variation of reactor antineutrino yield and spectrum
- 8 groups of near IBD samples with different ²³⁵U isotope fraction

Effective fission fraction for each isotope

$$F_{i}(t) = \sum_{r=1}^{6} \frac{W_{th,r}(t)\bar{p}_{r}(t)f_{i,r}(t)}{L_{r}^{2}\bar{E}_{r}(t)} / \sum_{r=1}^{6} \frac{W_{th,r}(t)\bar{p}_{r}(t)}{L_{r}^{2}\bar{E}_{r}(t)}$$

Effective fission fraction of ²³⁵U

Fuel-Composition Dependent Reactor Neutrino Yield

→ Dependence of IBD yield per fission on the isotope fraction of ²³⁵U

Measured total averaged IBD yield per fission (\overline{y}_f) = (5.84 ± 0.13)×10⁻⁴³ cm²/fission

Ratio (Data /H-M model) for the total average IBD yield = $0.940 \pm 0.021 \rightarrow (6.0 \pm 2.1)\%$ deficit

Averaged IBD yield per fission (\overline{y}_f) vs $\overline{F}_{i,j}$ \rightarrow slope means different neutrino yield for each isotope \rightarrow rules out the no fueldependent variation at 6.6 σ

The scaled model indicates the **reactor antineutrino anomaly**

→ Observed data ruled out no fuel-dependent variation of IBD yield/fission

Measurement of Absolute Reactor Neutrino Flux

Cross section calculation

- Vogel 84 formalism
- $\tau_n = 880.2 \text{ s} \text{ (PDG2017)}$

Data / Prediction, RENO 2200 days at near detector

0.924 +- 0.018 (for Huber + Mueller model) 0.966 +- 0.019 (for ILL + Vogel model)

Deficit of observed reactor neutrino fluxes relative to the prediction (Huber + Mueller model) indicates an overestimated flux or possible oscillation to sterile neutrinos

n-H IBD Analysis

Motivation:

- 1. Independent measurement of θ_{13} and $|\Delta m_{ee}{}^2|$ value
- 2. Consistent check on θ_{13} result from with n-Gd
- 3. Consistency and systematic check on reactor neutrinos

Detection Principle of Reactor Neutrinos (n-H)

Prompt signal (e⁺) : 1 MeV 2γ's + e⁺ kinetic energy (E = 1~10 MeV)

 Delayed signal (n): 8 MeV γ's from neutron's capture by Gd or H ~30 μs for n-Gd , ~200 μs for n-H

Delayed spectrum and capture time

Energy Calibration from γ-ray Sources

Non-linear resonse of the scintillation energy is calibrated using γ-ray source

 Deviation of all calibration data points with respect to the best-fit is within ~1%

¹²B Energy Spectrum (Near & Far)

 Electron energy spectrum from β-decays from ¹²B and ¹²N, which are produced by cosmic-muon interactions

Good agreement between data and MC spectrum!

One of examples to show how RENO MC well tuned and works fine

θ_{13} Measurement with n-H

Data set : 2011/08 ~ 2013/01 (~500 days)

Preliminary rate only analysis results is

 $\sin^2 2\theta_{13} = 0.085 \pm 0.008(\text{stat.}) \pm 0.012(\text{syst.})$

Paper is preparing & will be submitted soon

θ_{13} and $|\Delta m^2_{ee}|$ Measurement with n-H

43

Summary

- Observation of energy dependent disappearance of reactor neutrinos and improved measurement of and $|\Delta m_{ee}^2|$ and θ_{13}

$\sin^2 2\theta_{13}$	$= 0.0896 \pm 0.0048(\text{stat}) \pm 0.0048(\text{syst})$	±0.0068	7.6 % precision

5.2 % precision

±0.14

 First hint for correlation between 5 MeV excess and ²³⁵U fission fraction

- Measured absolute reactor neutrino flux : R= 0.918±0.018 (H-M)
- Measurement of $|\Delta m_{ee}^2|$ and θ_{13} using n-H IBD analysis

 $|\Delta m_{ee}^2| = 2.68 \pm 0.12 (\text{stat}) \pm 0.07 (\text{syst}) (\times 10^{-3} \text{eV}^2)$

- Additional 2~3 years of data taking under consideration to improve Δm_{ee}^2 accuracy and the fuel dependent IBD yield.