

39th International Symposium on Physics in Collision

16–20th September, 2019, Taipei, Taiwan

Latest measurement of $K^+ \rightarrow \pi^+ v \bar{v}$ with the NA62 experiment at CERN

Speaker: <u>Radoslav Marchevski (CERN)</u> On behalf of the NA62 collaboration

Outline:

- $K^+ \rightarrow \pi^+ v v$ decays in the SM
- The NA62 experiment at CERN
- $K^+ \rightarrow \pi^+ v v @ NA62 (2017 data)$
- Summary and prospects

Parametric uncertainty dominates [Buras. et. al., JHEP11(2015)033]

- FCNC loop processes: $s \rightarrow d$ coupling and highest CKM suppression
- Theoretically clean: Short distance contribution
- Hadronic matrix element measured with K₁₃ decays
- SM predictions: Buras. et. al., JHEP11(2015)033

$$BR(K^{+} \to \pi^{+} \nu \overline{\nu}) = (0.84 \pm 0.03) \times 10^{-10} \left(\frac{|V_{cb}|}{0.0407}\right)^{2.8} \left(\frac{\gamma}{73.2^{\circ}}\right)^{0.74} = (0.84 \pm 0.10) \times 10^{-10}$$
$$BR(K_{L} \to \pi^{0} \nu \overline{\nu}) = (0.34 \pm 0.05) \times 10^{-10} \left(\frac{|V_{ub}|}{0.00388}\right)^{2} \left(\frac{|V_{cb}|}{0.0407}\right)^{2} \left(\frac{\sin \gamma}{\sin 73.2^{\circ}}\right)^{2} = (0.34 \pm 0.06) \times 10^{-10}$$

$K \rightarrow \pi \nu \nu$ beyond the Standard Model

- Custodial Randall-Sundrum [Blanke, Buras, Duling, Gemmler, Gori, JHEP 0903 (2009) 108]
- MSSM analyses [Blazek, Matak, Int.J.Mod.Phys. A29 (2014) no.27],[Isidori et al. JHEP 0608 (2006) 064]
- Simplified Z, Z' models [Buras, Buttazzo, Knegjens, JHEP11(2015)166]
- Littlest Higgs with T-parity [Blanke, Buras, Recksiegel, Eur.Phys.J. C76 (2016) 182]
- LFU violation models [Isidori et al., Eur. Phys. J. C (2017) 77: 618]
- Leptoquarks [S. Fajfer, N. Košnik, L. Vale Silva, arXiv:1802.00786v1 (2018)]
- Constraints from existing measurements (correlations model dependent)

State of the art $K^+ \rightarrow \pi^+ \nu \nu$ experiments

Phys. Rev. D 77, 052003 (2008)

Phys. Lett. B 791, 156 (2019)

The NA62 experiment

NA62 timeline Dec 2008: NA62 Approval 2009 – 2014: Detector R&D and installation 2015: Commissioning 2016 – 2018: NA62 Run 1 2021 – 2023: NA62 Run2 (TBA)

NA62 primary goal: measurement of the ultra rare kaon decay $K^+ \rightarrow \pi^+ \nu \nu$

NA62 Collaboration consist of ~ 200 participants from: Birmingham, Bratislava, Bristol, Bucharest, CERN, Dubna, Fairfax, Ferrara, Firenze, Frascati, Glasgow, Lancaster, Liverpool, Louvain, Mainz, Moskow, Naples, Perugia, Pisa, Prague, Protvino, Rome I, Rome II, San Luis Potosi, Turin, TRIUMF, Vancouver UBC

NA62 detector

- SPS Beam:
 - ★ 400 GeV/c protons
 - ★ 2.10¹² protons/spill
 - 🖈 3.5s spill
 - ★ ~10¹⁸ POT/year

- Secondary positive Beam:
 - ★ 75 GeV/c momentum, 1% rms
 - ★ 100 µrad divergence (RMS)
 - ★ 60x30 mm² transverse size
 - ★ **K**⁺(6%)/ π ⁺(70%)/p(24%)
 - \star ~500 MHz of particles at GTK3

Decay Region:

- \star 60 m long fiducial region
- ★ ~ 3 MHz K⁺ decay rate
- ★ Vacuum ~ O(10⁻⁶) mbar

NA62 detector

- ★ KTAG: Differential Cherenkov counter for K⁺ ID
- ★ GTK: Si pixel beam tracker
- CHANTI: Anti-counter for
 inelastic beam-GTK3 interactions

- **STRAW:** track momentum spectrometer
- **CHOD:** Scintillator hodoscopes
- ★ LKr/MUV1/MUV2 : Calorimetric system
- **RICH:** Cherenkov counter for $\pi/\mu/e$ ID
- ★ LAV/SAC/IRC: Photon veto detectors
- ★ MUV3: Muon veto

Trigger and data collected

- * Includes periods with beam off
- Trigger streams (hardware L0 + software L1)
 - **☆ "PNN":**
 - L0: presence of a charged particle, photon and muon veto
 - L1: kaon identification, photon veto, STRAW track reconstruction
 - ★ "Control": minimum bias
- Offline analysis
 - ★ Data samples: **PNN; Control:** $K^+ \rightarrow \pi^+ \pi^0$, $K^+ \rightarrow \mu^+ \nu$, $K^+ \rightarrow \pi^+ \pi^+ \pi^-$
 - Blind analysis procedure: signal/validation regions masked during the analysis

Analysis strategy

Decay-in-flight

technique

 $\mathbf{P}_{\mathbf{K}}$ $\mathbf{P}_{\mathbf{V}}$ $\mathbf{P}_{\mathbf{V}}$

 $m_{miss}^2 = (P_K - P_{\pi^+})^2$

 π^{+} mass assumed for the track

- Muon suppression: > 10⁷
- **a** π^0 suppression (from K⁺ $\rightarrow \pi^+\pi^0$): > 10⁷
- Excellent time resolution: O(100ps)
- Kinematic suppression: ~ O(10⁴)

- 1) Signal selection and Single Event Sensitivity (S.E.S.)
- 2) Background evaluation
- 3) Unblinding signal regions and results

1. Signal Selection and Single Event Sensitivity (S.E.S)

Signal selection

 m^2_{miss} computed under π^+ mass hypothesis

Selection criteria

- \star single track decay topology
- * π^+ identification
- * photon rejection
- ★ multi-track rejection

Signal acceptance

Data after signal selection

Single Event Sensitivity: Results

• Integrated over beam intensity and π^+ momentum

S.E.S. =
$$(0.389 \pm 0.021) \times 10^{-10}$$
 $N_{\pi\nu\nu}^{exp} = 2.16 \pm 0.12 \pm 0.26_{ext}$

• External error on $N_{\pi\nu\nu}^{exp}$ from $Br(\pi\nu\nu) = (0.84 \pm 0.10) \times 10^{-10}$

PIC 2019

2. Background evaluation

π^0 suppression and search for $\pi^0 \rightarrow$ invisible

- A priori evaluation of π^0 suppression of K⁺ $\rightarrow \pi^+\pi^0$ decays (0.015 < m²_{miss} < 0.021 GeV²/c⁴)
 - Selection and trigger stream identical to $K^+ \rightarrow \pi^+ \nu \nu$ (1/3 of the data set used)
 - Single-γ detection efficiency from control K⁺ \rightarrow π⁺π⁰ data (Tag & Probe)
 - ★ π^0 suppression evaluated from convolution with MC K⁺→ $\pi^+\pi^0(\gamma)$
 - ★ Validation: side bands with expected rejection O(10-7) where $\pi^0 \rightarrow$ invisible excluded [E949, PRD72 (2005)]

 π^{0} suppression expected = $(2.8^{+5.9}_{-2.1})$ x10⁻⁹ (π^{+} momentum region 25-40 GeV/c)

$K^{+} \rightarrow \pi^{+}\pi^{0}$ background

Background: $K^+ \rightarrow \pi^+ \pi^0(\gamma)$ IB validation

 Agreement between expected and observed kinematic suppression in validation regions

Background: $K^+ \rightarrow \mu^+ \nu_{\mu}(\gamma)$ IB validation

 Agreement between expected and observed kinematic suppression in validation regions

Total expected background

Process	Expected events
$K^+ \to \pi^+ \nu \overline{\nu} \ (SM)$	$2.16 \pm 0.12_{stat} \pm 0.26_{ext}$
$K^+ \to \pi^+ \pi^0(\gamma)$ IB	$0.29 \pm 0.03_{stat} \pm 0.03_{syst}$
$K^+ \to \mu^+ \nu_\mu(\gamma) $ IB	$0.15 \pm 0.02_{stat} \pm 0.04_{syst}$
$K^+ \to \pi^+ \pi^- e^+ \nu_e$	$0.12 \pm 0.05_{stat} \pm 0.03_{syst}$
$K^+ \to \pi^+ \pi^- \pi^+$	$0.02 \pm 0.02_{syst}$
$K^+ \to \pi^+ \gamma \gamma$	$0.005 \pm 0.005_{syst}$
$K^+ \to l^+ \pi^0 \nu_l$	negligible
Upstream background	$0.9 \pm 0.2_{stat} \pm 0.2_{syst}$

Total background $1.5 \pm 0.2_{stat} \pm 0.2_{syst}$

3. Unblinding signal region and results

Final background validation

Final background validation

Opening the box

Opening the box

m²_{miss} signal and background 2017

Counting experiment

Events observed	3
Single event sensitivity	$(0.346 \pm 0.017) \ge 10^{-10}$
Expected background	1.65 ± 0.31

Upper limits (CLs method)

Observed	Expected (background only)	CL
Br(K ⁺ $\to \pi^+ \nu \nu$) < 1.85x10 ⁻¹⁰	$Br(K^+ \rightarrow \pi^+ \nu \nu) < 1.32 \times 10^{-10}$	90%
Br(K ⁺ $\to \pi^+ \nu \nu$) < 2.44x10 ⁻¹⁰	$Br(K^+ \rightarrow \pi^+ \nu \nu) < 1.62 \times 10^{-10}$	95%

- Two-sided 68% band: $Br(K^+ \rightarrow \pi^+ \nu \nu) = (0.47^{+0.72}_{-0.47}) \times 10^{-10}$
- Grossman Nir limit: $Br(K_L \rightarrow \pi^0 vv) < 8.14 \times 10^{-10} @ 90\% CL$

$K^+ \rightarrow \pi^+ \upsilon \upsilon$: historical perspective

$K^+ \rightarrow \pi^+ \upsilon \upsilon$: historical perspective

$K^+ \rightarrow \pi^+ \upsilon \upsilon$: Grossman – Nir limits

Summary and prospects

- Two events in signal region observed in 2017 data
- 2016+2017 NA62 result

$$BR(K^+ \to \pi^+ \nu \nu) < 1.85 \times 10^{-10} @ 90 \% \text{ CL}$$
$$BR(K^+ \to \pi^+ \nu \nu) = 0.47^{+0.72}_{-0.47} \times 10^{-10}$$

- Constraints on the largest enhancements allowed by NP models
- 2018 data analysis in progress (factor 2 more data)
 * On-going studies to increase signal efficiency
- Hardware improvements foreseen from 2021 to mitigate the upstream background

SPARES

Keystones of the analysis: Particle identification

RICH PID Calorimetric PID Track driven likelihoods discriminant Machine learning approach (BDT) for $\pi/\mu/e$ separation **Energy deposition** Particle mass using track momentum Energy sharing Momentum measurement under mass Shower shape profiles hypothesis (velocity spectrometer) V/c) 10^{-1} 78% π^+ efficiency vs 6.3x10⁻⁶ μ^+ efficiency π^+ efficiency vs 2.3x10⁻³ μ^+ efficiency efficiency/ efficiency/() 10⁻² π^+ efficiency (data) μ^+ efficiency (data) **H** 10⁻⁴ relim

Keystones of the analysis: π^0 suppression

Keystones of the analysis: Time resolution

Time calibration stability

• Excellent calibration at the processing level in 2017

• Stable time resolution and central value

Single-detector time resolution ~ 90ps

Keystones of the analysis: Kinematic resolution

Keystones of the analysis: Kinematic suppression

 $K^{\scriptscriptstyle +} \longrightarrow \pi^{\scriptscriptstyle +} \pi^{\scriptscriptstyle 0}$

• Kinematic suppression measured on $K^+ \rightarrow \pi^+ \pi^0$ decays in data

• Fraction of events $\pi^+\pi^0$ entering m^2_{miss} signal region

Keystones of the analysis: Kinematic suppression

 $K^{\scriptscriptstyle +} o \pi^{\scriptscriptstyle +} \pi^{\scriptscriptstyle 0}$

♦ Kinematic suppression measured on
 K⁺ → π⁺π⁰ decays in data

 Total kinematic suppression in signal region ~ 10⁻³ $K^{\scriptscriptstyle +} \to \mu^{\scriptscriptstyle +} \nu$

◆ Kinematic suppression measured on
 K⁺ → μ⁺ν decays in data

 Total kinematic suppression in signal region ~ 5x10⁻⁴

Keystones of the analysis: Kinematic suppression

Low intensity dependence of the kinematic suppression

- More pronounced in Region 1
- Kinematic misreconstruction dominated by mistagging in GTK

Background: $K^+ \rightarrow \pi^+ \pi^- \pi^-$ validation

- < 0.5 events expected in validation region (observed 0)</p>
- Indications from simulation that the background might be up to 2 times lower

Background: $K^+ \rightarrow \pi^+ \pi^- e^+ v$

- Sample of $2x10^9$ MC generated K⁺ $\rightarrow \pi^+\pi^-e^+\nu$ decays used for background estimation
 - ★ Correlation between m_{miss}^2 , kinematics and multi-track rejection
- MC simulation validated using data
- $K^+ \rightarrow \pi^+\pi^-e^+\nu$ expectation normalized to S.E.S. (m_{miss}^2 shape well reproduced)

Background: $K^+ \rightarrow \pi^+\pi^- e^+ v$ validation

Background: Upstream decays

$$N_{upstream}^{bg} = N_{\pi^+}^{upstream} \cdot P_{pileup}^{reco} \cdot P_{K-\pi}^{matching}$$

 $\begin{array}{l} N^{upstream}_{\pi^+} \implies \mbox{Events with a downstream 15-35 GeV/c } \pi^+ \mbox{ originating upstream of GTK3} \\ P^{reco}_{pileup} \implies \mbox{Probability that the source of upstream } \pi^+ \mbox{ is reconstructed in the GTK} \\ P^{matching}_{K-\pi} \implies \mbox{Probability the downstream } \pi^+ \mbox{ to be matched to a GTK track} \end{array}$

Background: Upstream decays

Count events in an upstream enriched sample

Background: Upstream decays

Background: $P^{matching}_{K-\pi}$ measurement

Background: Upstream decays validation

m²_{miss} signal and background 2017

Latest measurement of $K^+ \rightarrow \pi^+ \nu \nu$ with NA62 (R. Marchevski)