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I. INTRODUCTION

• CP-violation had already been discovered in K-, D-, and B-meson systems [M. Tan-

abashi et al. (Particle Data Group), Phys. Rev. D98, 030001 (2018)].

• All discovered CP-violation effects in meson systems are consistent with the expla-

nation by Kobayashi-Maskawa mechanism [ M. Kobayashi and T. Maskawa, Prog.

Theor. Phys. 49, 652 (1973)].

• However, it is still worthy to study further origins of CP-violation, not only because

it is a possible kind of new physics (NP), it is also a condition to explain the matter-

antimatter asymmetry in the Universe.

• CP-violation may also appear elsewhere, for example, behave as the electric dipole

moments (EDM) of particles, or some observable at current or future colliders.

https://doi.org/10.1103/PhysRevD.98.030001
http://dx.doi.org/10.1143/PTP.49.652
http://dx.doi.org/10.1143/PTP.49.652
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• Theoretically, new CP-violation may appear in the extended scalar sector, such as in

the Two-Higgs-doublet model (2HDM) which was widely studied [G. C. Branco et al.,

Phys. Rep. 516, 1 (2012)].

• Any Model with new CP-violation must face EDM constraints [ACME Collaboration,

Nature 562, 355 (2018); C. A. Baker et al., Phys. Rev. Lett. 97, 131801 (2006)]

|de| < 1.1× 10−29 e · cm (90% C.L.), |dn| <

 3.0× 10−26 e · cm (90% C.L.),

3.6× 10−26 e · cm (95% C.L.).

• In this talk, we choose the 2HDM with soft CP-violation as an example, discussing its

EDM constraints and the corresponding cancelation mechanism; we don’t discuss the

collider tests here due to the limited time and unfinished research.

http://dx.doi.org/10.1016/j.physrep.2012.02.002
https://doi.org/10.1038/s41586-018-0599-8
https://doi.org/10.1103/PhysRevLett.97.131801


4

II. THE MODEL

• For the 2HDM with soft CP-violation, we follow the convention: [A. Arhrib et al.,

JHEP 04 (2011), 089; A. W. E. Kaffas et al., Nucl. Phys. B775, 45 (2007)]

L = |Dφ1|2 + |Dφ2|2 − V (φ1, φ2)

• The potential contain a Z2 symmetry which is softly broken
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• Nonzero m2

12 will break the Z2 symmetry softly.

• Fields definition: φ1 ≡ (ϕ+
1 , (v1 + η1 + iχ1)/

√
2)T , φ2 ≡ (ϕ+

2 , (v2 + η2 + iχ2)/
√

2)T .

https://doi.org/10.1007/JHEP04(2011)089
https://doi.org/10.1016/j.nuclphysb.2007.03.041
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• Here m2
1,2 and λ1,2,3,4 must be real, while m2

12 and λ5 can be complex→CP-violation.

• The vacuum expected value (VEV) for the scalar fields: 〈φ1〉 ≡ (0, v1)T/
√

2, 〈φ2〉 ≡
(0, v2)T/

√
2, and we denote tβ ≡ |v2/v1|.

• m2
12, λ5, and v2/v1 can all be complex, but we can always perform a rotation to keep

at least one of them real, thus we choose v2/v1 real.

• A relation: Im (m2
12) = v1v2Im(λ5).

• Diagonalization: (a) Charged Sector

G± = cβϕ
±
1 + sβϕ

±
2 , H± = −sβϕ±1 + cβϕ

±
2 .
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• Diagonalization: (a) Neutral Sector

G0 = cβχ1 + sβχ2, A = −sβχ1 + cβχ2.

• For the CP-conserving case, A is a CP-odd mass eigenstate.

• For CP-violation case, (H1, H2, H3)T = R(η1, η2, A)T , with

R =


1

cα3 sα3

−sα3 cα3




cα2 sα2

1

−sα2 cα2




cβ+α1 sβ+α1

−sβ+α1 cβ+α1

1

 .

• SM limit: α1,2 → 0.
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• Parameter Set (8): (M1,M2,M±, β, α1, α2, α3,Re(m2
12)).

• Relation:

M2
3 =

c(α1+2β)(M
2
1 −M2

2 s
2
α3

)/c2
α3
−M2

2 s(α1+2β)tα3

c(α1+2β)sα2 − s(α1+2β)tα3

or equivalently

tα3 =
(m2

3 −m2
2)±

√
(m2

3 −m2
2)

2
s2

(2β+α1) − 4 (m2
3 −m2

1) (m2
2 −m2

1) s2
α2
c2

(2β+α1)

2 (m2
2 −m2

1) sα2c(2β+α1)

.

• Useful for different scenarios: mass-splitting scenario or nearly mass-degenerate sce-

nario for the two heavy scalars (denote H1 as the SM-like scalar thus M1 = 125 GeV).
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Yukawa Couplings

• Three types of interaction: Q̄LφidR, Q̄Lφ̃iuR, L̄Lφi`R, with φ̃i ≡ iσ2φ
∗
i .

• The Z2 symmetry is helpful to avoid the FCNC problem, and with this symmetry,

each kind of the above bilinear can couple only to one scalar doublet.

• Four different types (I, II, III, IV)

ūiui d̄idi ¯̀
i`i

Type I φ2 φ2 φ2

Type II φ2 φ1 φ1

Type III (lepton-specific) φ2 φ2 φ1

Type IV (flipped) φ2 φ1 φ2
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Interaction: L ⊃∑ cV,iHi(2m
2
W/vW

+W− +m2
Z/vZZ)−∑(mf/v)(cf,iHif̄LfR + H.c.)

cV,1 cV,2 cV,3

cα1cα2 −cα3sα1 − cα1sα2sα3 −cα1cα3sα2 + sα1sα3

cf,i = Rijcf,j where j = η1, η2, A

Type cu,η1 cu,η2 cu,A cd,η1 cd,η2 cd,A c`,η1 c`,η2 c`,A

I 0 s−1
β −it−1

β 0 s−1
β it−1

β 0 s−1
β it−1

β

II 0 s−1
β −it−1

β c−1
β 0 −itβ c−1

β 0 −itβ

III 0 s−1
β −it−1

β 0 s−1
β it−1

β c−1
β 0 −itβ

IV 0 s−1
β −it−1

β c−1
β 0 −itβ 0 s−1

β it−1
β
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III. EDM CONSTRAINTS AND CANCELATION MECHANISM

• The electron and neutron EDM are usually useful to set constraints on models with

new CP-violation sources, such as the effective interaction L ⊃ − i
2
df f̄σ

µνγ5fFµν .

• Electron-nucleon interaction can also contribute an “effective” EDM in atom or

molecule measurements, such as the effective interaction L ⊃ CN̄Nēiγ5e, and the

modification δde = kC with k ≈ 1.6× 10−21 TeV2 · e · cm for ACME experiment.

[C. Cesarotti et al., JHEP 05 (2019), 059.]

• Usually, the electron EDM measurement can set stricter constraint than neutron; how-

ever, some models allow some cancelation mechanism that the electron EDM measure-

ment itself can provide only a correlation behavior between different parameters, thus

the neutron EDM is also important [see e.g., Y.-N. Mao, Phys. Rev. D90, 115024

(2014); Phys. Rev. D94, 055008 (2016); L. Bian et al., Phys. Rev. Lett. 115, 021801

(2015); L. Bian and N. Chen, Phys. Rev. D95, 115029 (2017); etc.].

https://doi.org/10.1007/JHEP05(2019)059
https://doi.org/10.1103/PhysRevD.90.115024
https://doi.org/10.1103/PhysRevD.90.115024
https://doi.org/10.1103/PhysRevD.94.055008
https://doi.org/10.1103/PhysRevLett.115.021801
https://doi.org/10.1103/PhysRevLett.115.021801
https://doi.org/10.1103/PhysRevD.95.115029
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• The scalar or vector interactions are not affected by the Yukawa type.

• We divide the four Yukawa types into two groups: (I, IV) and (II, III).

• Reason: in each group, the two models share the same electron-scalar and top-scalar

interactions, which means the dominant behavior for the two models in a same group

must be the the same.

• b → sγ decay set m± & 570 GeV for Type II and IV models, while for Type I and

III models, H± can be lighter in large tβ limit [Belle Collaboration, 1608.02344; M.

Misiak and M. Steinhauser, Eur. Phys. J. C77, 201 (2017).].

https://arxiv.org/abs/1608.02344
https://doi.org/10.1140/epjc/s10052-017-4776-y
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Two-loop diagrams and e−N interaction:
γ γ γ
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◦ Typical Feynman diagrams.

◦ Barr-Zee type, non Barr-Zee

type, e−N interaction.

◦ Blue lines denote γ and Z, red

lines denote neutral scalars.

◦ Refs: [S. M. Barr and A. Zee,

PRL65, 21 (1990); T. Abe et

al., JHEP 04 (2016), 106; N-

PB352, 45 (1991); etc.]

https://doi.org/10.1103/PhysRevLett.65.21
https://doi.org/10.1007/JHEP04(2016)106
https://doi.org/10.1016/0550-3213(91)90128-K
https://doi.org/10.1016/0550-3213(91)90128-K
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A. Type I & IV Models

• In these two models, cancelation mechanism cannot affect.

• In most region tβ ∼ O(1 − 10), |deff
e | ' −(1 − 4) × 10−26sα2/tβ depending on α1 and

m2,3 →no cancelation happens as mentioned above.

• |α2| . 10−3tβ thus the CP-phase in H1tt̄ coupling < 10−3; |α2| → 0 also leads to mass

degeneration between m2 and m3 →very small CP-violation effects.

• No further constraint through neutron EDM measurement.

• Very difficult for further tests.
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B. Type II & III Models

• Cancelation between different contributions can occur in this scenario.

• Two different scenarios: (a) nearly mass degeneration with s2α3 ∼ O(1) and |m3 −
m2|/v � 1; (b) mass splitting scenario with large m2,3 splitting but |s2α3| � 1.

• Recall the relation above:

M2
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c(α1+2β)(M
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2 s
2
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.
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(a) The nearly mass degenerate scenario, example, m2,3 ' 500 GeV
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◦ Insensitive to α3, and cancelation appear around β ∼ 0.76.

◦ The β location when cancelation appear is insensitive to α2 (0.05, 0.1, 0.15) L→R.

◦ The last figure combine also the Higgs signal strength global fit.
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Neutron EDM:

• From the last page, we see that the electron EDM itself cannot set an upper limit of

CP-violation phase because when a cancelation appear, it is not sensitive to the exact

number of α2, thus α2 itself is not directly constrained.

• However, cancelation for neutron EDM usually do not appear at the same time.

• We do not show the calculation of neutron in details here, when cancelation appear in

the electron EDM, the neutron EDM is almost ∝ sα2 , with an uncertainty o ∼ 50%.

• Using its central value, we can set the upper limit |α2| . 0.15, this result is stricter

than that obtained from Higgs global fit.
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(b)The mass splitting scenario:

α3 ∼ π/2
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α3 ∼ 0
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• Choose m2 = 500 GeV and m3 = 650 GeV.

• Similar cancelation behavior as the nearly mass degenerate scenario.

• Value of β changed due to the different behavior of α3(∼ 0 or π/2).

• Neutron EDM constraint: similar to the nearly mass degenerate scenario |α2| . 0.14.

• In this scenario, H3 → ZH2 decay is open and thus it can be used as a collider test:

its coupling is O(1) which brings significant branching ratio.
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IV. SUMMARY AND DISCUSSION

• In this talk (and the corresponding unfinished paper), we discuss the CP-violation in

extended Higgs sector, and take the soft CP-violation 2HDM as an example.

• Electron EDM set strict constraint on all types of models, for Type I and IV, the

CP-violation Higgs-fermion phase are set as < 10−3; while for Type II and III, it set

a strong correlation between parameters.

• When cancelation happens, neutron EDM becomes important, because it can set the

limit directly on |α2| < 0.15; this limit is stricter than that from Higgs global fit, but

the Higgs-fermion CP-phase is still allowed at O(0.1).

• We do not discuss the collider test in this talk in details, because the time is limited

and this part have not been finally finished.
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