Review on hadronic B decays

Jike Wang (Wuhan University)

on behalf of the LHCb, including results from ATLAS and CMS

Outline of the talk

- New resonances: $(\Lambda_b^0 \pi^+ \pi^-), (\Lambda_b^0 \pi^{\pm})$
- Observation of $B_{(s)}^0 \to J/\psi p \overline{p}$, $\Lambda_b^0 \to \chi_{c1}(3872)pK^-$, $B_s^0 \to \overline{D}^{*0}\phi$, excited B_c^+ state, $B^0 \to (Z_c \to \eta_c(1S))K^+ \pi^-$, $\Lambda_b \to J/\varphi \Lambda \phi$ (CMS)
- Amplitude analysis of $B^{\pm} \to \pi^{\pm} K^+ K^-, B_s^0 \to K^{*0} \overline{K}^{*0}, B_s^0 \to K_s^0 K^{\pm} \pi^{\mp}$
- Several sources of CPV in $B^+ \to \pi^+ \pi^-$; model independent observation of $B^0 \to J/\psi K^+ \pi^-$; CPV phase ϕ_s in $B_s^0 \to J/\psi \phi$ (ATLAS)

New resonances in the $\Lambda_b^0 \pi^+ \pi^-$ system

- Excited states to the Λ⁰_bπ⁺π⁻ has already been studied by the LHCb:
 e.g. Λ_b (5912)⁰
- More states are predicted in the mass region near/above 6.1 GeV $(>\Sigma_b^{(*)\pm}\pi^{\mp}).$

Split $m_{\Lambda_b^0 \pi^{\pm}}$ into 3 regions:

- Within the natural width of the known Σ_b^{\pm} mass
- Within the natural width of the known $\Sigma_b^{(*)\pm}$ mass
- Remaining nonresonant (NR) region.

New resonances in the $\Lambda_b^0 \pi^+ \pi^-$ system

- Significant $\Lambda_b (6152)^0 \rightarrow \Sigma_b^{\pm} \pi^{\mp}$ and $\Lambda_b (6152)^0 \rightarrow \Sigma_b^{*\pm} \pi^{\mp}$ signals are observed
 - 1/3 and 1/4 of the signal decays in the sample
- $\Lambda_b (6146)^0 \rightarrow \Sigma_b^{*\pm} \pi^{\mp}$ decays account for about half of the observed decay rate
- Consistent with the predictions for the doublet of $\Lambda_b(1D)^0$
 - Similar natural widths are expected for the two states of the doublet.
- Interpretation of these states as excited Σ_b^0 states cannot be excluded.

ARXIV:1907.13598 (to PRL); 9fb⁻¹

Two new resonances in the $(\Lambda_b^0 \pi^{\pm})$ system

- Beyond these ground states (Σ_b^{\pm} , $\Sigma_b^{*\pm}$)
 - Radially/orbitally excited states are expected at higher masses, but only a few observed
- These excited states will cast light on the internal mechanisms governing the dynamics of the constituent quarks

Figure 2: Mass distribution for selected $\Lambda_b^0 \pi^{\pm}$ candidates. The points show experimental data. The left (right) column shows $\Lambda_b^0 \pi^-$ ($\Lambda_b^0 \pi^+$) combinations. The top row shows the fits to the lower-mass states Σ_b^{\pm} and $\Sigma_b^{*\pm}$. The lower row presents the fits to the new mass peaks with the requirement $p_{\rm T}(\pi_s^{\pm}) > 1000$ MeV.

| Jike Wang, Wuhan University | PIC-2019 | Page 5

PRL. 122(2019) 012001; 9fb⁻¹

The measurements of the $(\Lambda_b^0 \pi^{\pm})$ resonances

- Observation of two new mass peaks in the $\Lambda_b^0 \pi^+$ and $\Lambda_b^0 \pi^-$ systems
- The ground-states $(\Sigma_b^{\pm}, \Sigma_b^{*\pm})$ are also confirmed and the masses and widths precisely measured.

Quantity	Value [MeV]	
$m(\Sigma_b(6097)^-)$	$6098.0 \pm \ 1.7 \ \pm \ 0.5$	
$m(\Sigma_b(6097)^+)$	$6095.8 \pm \ 1.7 \ \pm \ 0.4$	
$\Gamma(\Sigma_b(6097)^-)$	$28.9 \pm 4.2 \pm 0.9$	- Compatible with
$\Gamma(\Sigma_b(6097)^+)$	$31.0 \pm 5.5 \pm 0.7$	being Σ (1D)
${m(\Sigma_b^-)}$	$5815.64 \pm 0.14 \pm 0.24$	Defing $Z_b(1P)$
$m(\Sigma_{b}^{*-})$	$5834.73 \pm 0.17 \pm 0.25$	excitations
$m(\Sigma_b^+)$	$5810.55 \pm 0.11 \pm 0.23$	
$m(\Sigma_b^{*+})$	$5830.28 \pm 0.14 \pm 0.24$	
$\Gamma(\Sigma_b^-)$	$5.33 \pm 0.42 \pm 0.37$	- Other interpretations,
$\Gamma(\Sigma_b^{*-})$	$10.68 \pm 0.60 \pm 0.33$	such as molecular
$\Gamma(\Sigma_b^+)$	$4.83 \pm 0.31 \pm 0.37$	states may also be
$\frac{\Gamma(\Sigma_b^{*+})}{\Gamma(\Sigma_b^{*+})}$	$9.34 \pm 0.47 \pm 0.26$	states, may also be
$m(\Sigma_{b}^{*-}) - m(\Sigma_{b}^{-})$	$19.09 \pm 0.22 \pm 0.02$	possible
$m(\Sigma_b^{*+}) - m(\Sigma_b^+)$	$19.73 \pm 0.18 \pm 0.01$	-
$\Delta(\Sigma_b(6097)^{\pm})$	$-2.2\pm~2.4~\pm~0.3$	
$\Delta(\Sigma_b^{\pm})$	$-5.09 \pm 0.18 \pm 0.01$	
$\Delta(\Sigma_b^{*\pm})$	$-4.45 \pm 0.22 \pm 0.01$	

Observation of $B^0_{(s)} \rightarrow J/\psi p \overline{p}$ decays

- Sensitive to pentaquark in the J/ψp and J/ψp
 components and to glueball states (pp
)
- Baryonic $B_{(s)}^0$ decays:
 - Study the dynamics of the final baryon-antibaryon system and the threshold enhancement (a)
- Theoretical expectation for the $Br(B^0_{(s)} \rightarrow J/\psi p\bar{p})$ is at the level of 10^{-9} .
 - Intermediate pentaquark or glueball state can enhance

PRL. 122(2019) 191804; 5.2 *fb*⁻¹

Figure 1: Leading Feynman diagrams for (a) $B^0 \to J/\psi p\bar{p}$ and (b) $B^0_s \to J/\psi p\bar{p}$ decays.

Observation of $B^0_{(s)} \rightarrow J/\psi p \overline{p}$ decays

- **First observation of :** $B^0_{(s)} \rightarrow J/\psi p \bar{p}$
- The measured BRs: $\mathcal{B}(B^0 \to J/\psi p \overline{p}) = (4.51 \pm 0.40 \text{ (stat)} \pm 0.44 \text{ (syst)}) \times 10^{-7},$ $\mathcal{B}(B^0_s \to J/\psi p \overline{p}) = (3.58 \pm 0.19 \text{ (stat)} \pm 0.39 \text{ (syst)}) \times 10^{-6}.$
- For the $B_{(s)}^0$ meson, the result is much higher than the expected value of $O(10^{-9})$
- Most precise single measurement of both the B^0 and $B^0_{(s)}$ mass

PRL. 122(2019) 191804; 5.2 fb⁻¹

Observation $\Lambda_b^0 \to \chi_{c1}(3872)pK^-$

$\Lambda_b^0 \to \chi_{c1}(3872) pK^-$ with $\chi_{c1}(3872) \to J/\psi \pi \pi$, observed the first time

- Observing Λ_b^0 decays involving the $\chi_{c1}(3872)$ state will allow comparison of their decay rates to the rates for conventional charmonium states
- The BR with respect to that of the $\Lambda_b^0 \rightarrow \psi(2S)pK^-$, where the $\psi(2S) \rightarrow J/\psi\pi\pi$ final state, is measured to be:

$$\frac{\mathcal{B}(\Lambda_{\rm b}^{0} \to \chi_{\rm c1}(3872) \rm pK^{-})}{\mathcal{B}(\Lambda_{\rm b}^{0} \to \psi(2S) \rm pK^{-})} \times \frac{\mathcal{B}(\chi_{\rm c1}(3872) \to \rm J/\psi \, \pi^{+} \pi^{-})}{\mathcal{B}(\psi(2S) \to \rm J/\psi \, \pi^{+} \pi^{-})} = (5.4 \pm 1.1 \pm 0.2) \times 10^{-2} \,.$$

JHEP 09 (2019) 028; 1,2,1.9 fb⁻¹ at 7,8,13 TeV

Figure 1: Projection of the two-dimensional distributions of (left) $J/\psi \pi^+\pi^- pK^-$ and (right) $J/\psi \pi^+\pi^-$ masses for the (top) $\Lambda_b^0 \rightarrow \psi(2S)pK^-$ and (bottom) $\Lambda_b^0 \rightarrow \chi_{c1}(3872)pK^-$ candidates.

Observation $\Lambda_b \rightarrow J/\phi \Lambda \phi$ (CMS)

$\Lambda_b \rightarrow J/\psi \Lambda \phi$ observed for the first time, at CMS

- Better understanding of final-state strong interactions in the b-baryon decays and test the heavy-quark effective theory
- Rich resonant structure in the $J/\psi\phi$ system

• Measured:

 $\mathcal{B}(\Lambda_b^0 \to J/\tilde{\psi}\Lambda\phi)/\mathcal{B}(\Lambda_b^0 \to \psi(2S)\Lambda) = (8.26 \pm 0.90\,(\text{stat}) \pm 0.68\,(\text{syst}) \pm 0.11(\mathcal{B})) \times 10^{-2}$

CMS-PAS-BPH-19-002; 60 *fb*⁻¹ at 13 TeV

Observation $B_s^0 \to \overline{D}^{*0} \phi$ and search $B^0 \to \overline{D}^0 \phi$

Figure 1: Diagrams that contribute to the (a) colour-suppressed $B_s^0 \to \overline{D}^{(*)0}/D^{(*)0}\phi$, (b) *W*-exchange OZI-suppressed $B^0 \to \overline{D}^0/D^0\phi$ and the (c) colour-suppressed $B^0 \to \overline{D}^0\omega$ decays.

- No single measurement dominates the world average of angle γ
- Decays $B_s^0 \to \overline{D}^{*0} \phi$ open possibilities to offer competitive experimental precision on the angle γ

| Jike Wang, Wuhan University | PIC-2019 | Page 11

Observation $B_s^0 \to \overline{D}^{*0} \phi$ and search $B^0 \to \overline{D}^0 \phi$

• **First obeservation of** $B_s^0 \to \overline{D}^{*0} \phi$:

 $\mathcal{B}(B^0_s \to \overline{D}^{*0}\phi) = (3.7 \pm 0.5 \pm 0.3 \pm 0.2) \times 10^{-5}$

- $B^0 \rightarrow \overline{D}{}^0 \pi^+ \pi^-$ is taken as reference channel
- An upper limit is set: $Br(B^0 \rightarrow \overline{D}{}^0 \phi) < 2.0(2.3) \times 10^{-6}$) at 90% (95%)
 - A factor of six improvement over the previous BaBar result

PRD (2018) 028; 3 *fb*⁻¹ at 7,8 TeV

Observation of an excited B_c^+ state

- An excited B_c^+ in the $B_c^+\pi^+\pi^-$ invariant-mass:
 - Consistent with the $B_c^*(2^3S_1)$ state reconstructed without the low-energy γ
 - The chain: $B_c^*(2^3S_1) \rightarrow B_c^*(1^3S_1) \pi^+\pi^-, \ B_c^*(1^3S_1) \rightarrow B_c^+\gamma$

Observation of an excited B_c^+ state

	$B_{c}^{*}(2S)^{+}$	$B_c(2S)^+$
Signal yield	51 ± 10	24 ± 9
Peak ΔM value (MeV/ c^2)	566.2 ± 0.6	597.2 ± 1.3
Resolution (MeV/c^2)	2.6 ± 0.5	2.5 ± 1.0
Local significance	6.8σ	3.2σ
Global significance	6.3σ	2.2σ

First peak:

 $6841.2 \pm 0.6 \,(\text{stat}) \pm 0.1 \,(\text{syst}) \pm 0.8 \,(B_c^+) \,\text{MeV}/c^2,$

Second peak:

 $6872.1 \pm 1.3 \,(\text{stat}) \pm 0.1 \,(\text{syst}) \pm 0.8 \,(B_c^+) \,\text{MeV}/c^2.$

PRL. 122(2019) 232001; 8.5 *fb*⁻¹ at 7,8,13 TeV

Observation of two excited B_c^+ **state (CMS)**

• The higher peak mass :

 $6871.0 \pm 1.2 \, (stat) \pm 0.8 \, (syst) \pm 0.8 \, (B_c^+) \, \text{MeV}$

• Mass difference: 29MeV

```
M(B_c^+\pi^+\pi^-), M(B_c^+):
reconstructed
m_{B_c^+}: \text{the world-average } B_c^+ \text{ mass}
For better resolution
```

PRL. 122(2019) 132001; 13 *fb*⁻¹ at 13 TeV

$B^0 \to \eta_c(1S)K^+\pi^-$

- Theory models predict 0⁺ candidates below the open-charm threshold that could decay into $\eta_c \pi^-$ (e.g. the $Z_c(3900)^-$).
- Therefore discovery of a charged charmonium-like meson in $(\eta_c \pi^-) \Rightarrow$ important input towards understanding the nature of exotic hadrons.
- $B^0 \rightarrow \eta_c(1S)K^+\pi^-$ decay is studied for the first time

$B^0 \to \eta_c(1S)K^+\pi^-$

• Good description is obtained when including an exotic $Z_c(\eta_c(1S) \pi^-)$ resonant state(> 3σ)

• First measurement of $B^0 \rightarrow \eta_c(1S)K^+\pi^-$ BR:

 $\mathcal{B}(B^0 \to \eta_c K^+ \pi^-) = (5.73 \pm 0.24 \pm 0.13 \pm 0.66) \times 10^{-4},$

• For the resonance:

$$m_{Z_c^-} = 4096 \pm 20^{+18}_{-22} \,\text{MeV}$$
 and $\Gamma_{Z_c^-} = 152 \pm 58^{+60}_{-35} \,\text{MeV}$

• The fitted fractions:

Amplitude	Fit fraction $(\%)$
$B^0 \rightarrow \eta_c K^*(892)^0$	$51.4 \pm 1.9 \ ^{+1.7}_{-4.8}$
$B^0 \to \eta_c K^*(1410)^0$	$2.1 \pm 1.1 \stackrel{+1.1}{_{-1.1}}$
$B^0 \to \eta_c K^+ \pi^- (\text{NR})$	$10.3 \pm 1.4 \ ^{+1.0}_{-1.2}$
$B^0 \to \eta_c K_0^* (1430)^0$	$25.3 \pm 3.5 \ ^{+3.5}_{-2.8}$
$B^0 \to \eta_c K_2^* (1430)^0$	$4.1 \pm 1.5 \ ^{+1.0}_{-1.6}$
$B^0 \to \eta_c K^* (1680)^0$	$2.2 \pm 2.0 \ ^{+1.5}_{-1.7}$
$B^0 \to \eta_c K_0^* (1950)^0$	$3.8 \pm 1.8 \ ^{+1.4}_{-2.5}$
$B^0 \to Z_c(4100)^- K^+$	$3.3 \pm 1.1 \stackrel{+1.2}{_{-1.1}}$

Measurements of Ξ_b^- baryons

The first measurement of the production rate of Ξ_b⁻ baryons in *pp* collisions
 Relative to that of Λ_b⁰ baryons

$$\frac{f_{\Xi_b^-}}{f_{\Lambda_b^0}} \frac{\mathcal{B}(\Xi_b^- \to J/\psi \,\Xi^-)}{\mathcal{B}(\Lambda_b^0 \to J/\psi \,\Lambda)} = (10.8 \pm 0.9 \pm 0.8) \times 10^{-2} \quad [\sqrt{s} = 7, 8 \,\text{TeV}],$$

$$\frac{f_{\Xi_b^-}}{f_{\Lambda_b^0}} \frac{\mathcal{B}(\Xi_b^- \to J/\psi \,\Xi^-)}{\mathcal{B}(\Lambda_b^0 \to J/\psi \,\Lambda)} = (13.1 \pm 1.1 \pm 1.0) \times 10^{-2} \quad [\sqrt{s} = 13 \,\text{TeV}],$$

• The mass of the Ξ_b^- is also measured relative to that of the Λ_b^0 baryon:

 $m(\Xi_b^-) = 5796.70 \pm 0.39 \pm 0.15 \pm 0.17 \,\mathrm{MeV}/c^2,$

- The last uncertainty is due to the precision on the known Λ_b^0 mass
- Most precise determination of Ξ_b^- mass.

PRD 99052006 (2019); 1,2,1.6 *fb*⁻¹ at 7,8,13 TeV

Amplitude analysis of $B^{\pm} \rightarrow \pi^{\pm} K^{+} K^{-}$

• The first amplitude analysis of the $B^{\pm} ightarrow \pi^{\pm} K^{+} K^{-}$

The data is best described by a coherent sum of five resonant structures + a nonresonant component + a ππ ↔ KK S-wave rescattering

1	liko Wang	Wuban	University		Dago 10
	Jike wand,	wunan	University	PIC-20191	Pade 13

Contribution	Fit Fraction(%)	$A_{CP}(\%)$	Magnitude (B^+/B^-)	Phase[o] (B^{+}/B^{-})
$K^{*}(892)^{0}$	$7.5\pm0.6\pm0.5$	$+12.3 \pm 8.7 \pm 4.5$	$0.94 \pm 0.04 \pm 0.02$	0 (fixed)
			$1.06 \pm 0.04 \pm 0.02$	0 (fixed)
$K_0^*(1430)^0$	$4.5\pm0.7\pm1.2$	$+10.4 \pm 14.9 \pm 8.8$	$0.74 \pm 0.09 \pm 0.09$	$-176\pm10\pm16$
			$0.82 \pm 0.09 \pm 0.10$	$136\pm11\pm21$
Single pole	$32.3 \pm 1.5 \pm 4.1$	$-10.7 \pm 5.3 \pm 3.5$	$2.19 \pm 0.13 \pm 0.17$	$-138\pm7\pm5$
			$1.97 \pm 0.12 \pm 0.20$	$166\pm 6\pm 5$
$\rho(1450)^0$	$30.7 \pm 1.2 \pm 0.9$	$-10.9 \pm 4.4 \pm 2.4$	$2.14 \pm 0.11 \pm 0.07$	$-175\pm10\pm15$
			$1.92 \pm 0.10 \pm 0.07$	$140\pm13\pm20$
$f_2(1270)$	$7.5\pm0.8\pm0.7$	$+26.7 \pm 10.2 \pm 4.8$	$0.86 \pm 0.09 \pm 0.07$	$-106\pm11\pm10$
			$1.13 \pm 0.08 \pm 0.05$	$-128\pm11\pm14$
Rescattering	$16.4 \pm 0.8 \pm 1.0$	$-66.4 \pm 3.8 \pm 1.9$	$1.91 \pm 0.09 \pm 0.06$	$-56\pm12\pm18$
			$0.86 \pm 0.07 \pm 0.04$	$-81\pm14\pm15$
$\phi(1020)$	$0.3\pm0.1\pm0.1$	$+9.8 \pm 43.6 \pm 26.6$	$0.20 \pm 0.07 \pm 0.02$	$-52\pm23\pm32$
			$0.22 \pm 0.06 \pm 0.04$	$107\pm33\pm41$

Amplitude analysis of $B_s^0 \to K^{*0}R^{*0}$

- $B_s^0 \to K^{*0} \overline{K}^{*0}$ could be a golden channel for a precision test of the CKM β_s .
- High-precision analyses of it, require to account for subleading amplitudes

The amplitude analysis outputs:

- Measured observables are compatible with the absence of *CP* violation
- A low polarisation fraction is found
- A large S-wave contribution (60%), is measured in the 150 MeV window around the K^{*0} mass.

JHEP 07 (2019) 032; 3 fb⁻¹

Measurement of $B^0 \rightarrow K^{*0} R^{*0}$

5300 5350 5400 5450 5500 $M(K^{+}\pi^{-}K^{-}\pi^{+})$ [MeV/c²] $\mathcal{B}(B^0 \to K^{*0}\overline{K}^{*0}) = (8.0 \pm 0.9 \,(\text{stat}) \pm 0.4 \,(\text{syst})) \times 10^{-7}.$ Aggregated four-body invariant-mass fit

JHEP 07 (2019) 032; 3 fb⁻¹

result of the 2011 and 2012 data.

$B_s^0 \to K_s^0 K^{\pm} \pi^{\mp}$ amplitute analysis

• Undiscovered particles could contribute in the b→s loops and cause the observables to deviate from the values expected in the SM

$K_{ m s}^0 K^+ \pi^-$		$K^0_{ m s}K^-\pi^+$		
Resonance	Fit fraction (%)	Resonance	Fit fraction (%)	
$K^{*}(892)^{-}$	15.6 ± 1.5	$K^{*}(892)^{+}$	13.4 ± 2.0	
$K_0^*(1430)^-$	30.2 ± 2.6	$K_0^*(1430)^+$	28.5 ± 3.6	
$K_2^*(1430)^-$	2.9 ± 1.3	$K_2^*(1430)^+$	5.8 ± 1.9	
$K^{*}(892)^{0}$	13.2 ± 2.4	$\overline{K}^{*}(892)^{0}$	19.2 ± 2.3	
$K_0^*(1430)^0$	33.9 ± 2.9	$\overline{K}_{0}^{*}(1430)^{0}$	27.0 ± 4.1	
$K_2^*(1430)^0$	5.9 ± 4.0	$\overline{K}_{2}^{*}(1430)^{0}$	7.7 ± 2.8	

The fit fractions associated with each resonant component

• The decays are observed for the first time:

$$B_s^0 \to K_0^*(1430)^{\pm} K^{\mp} \text{ and } B_s^0 \to \overline{K}_0^*(1430)^0 \overline{K}_0^{0}$$

JHEP 06(2019) 114; 3 fb⁻¹

| Jike Wang, Wuhan University | PIC-2019 | Page 22

Several sources of CPV in $B^+ \to \pi^+ \pi^+ \pi^-$

Observations of CPV from an amplitude analysis:

- A large CP asymmetry is observed in the decay amplitude involving the tensor $f_2(1270)$ resonance
- Significant CPV is found in the $\pi^+\pi^-$ S-wave at low invariant mass.
- CPV related to interference between the $\pi^+\pi^-$ S-wave and the P-wave $B^+ \rightarrow \rho(770)^0\pi^+$ amplitude is also established

Model-ind. observation of $B^0 \rightarrow J/\psi K^+\pi^-$

- $K^+\pi^-$ spectrum into 5 bins. In each bin, the hypothesis that the 3-D angular distribution can be described by structures induced only by K^* resonances is examined, making minimal assumptions about the $K^+\pi^-$ system.
- Data reject the K^* -only hypothesis, implying the observation of exotic contributions in a model independent fashion.
- $m(J/\psi\pi^{-})$ vs. $m(K^{+}\pi^{-})$ suggests structures near $m(J/\psi\pi^{-}) = 4200$ MeV,4600 MeV

CPV phase ϕ_s in $B_s^0 \to J/\psi\phi$ (ATLAS)

- The CP violating phase ϕ_s is defined as the weak phase difference between the $B_s^0 \overline{B}_s^0$ mixing amplitude and the b \rightarrow ccs decay amplitude
- NP involved in the mixing may increase by enhancing the mixing phase ϕ_s with respect to the SM
- Combined 7,8 TeV data, gives the • Candidates / 5 MeV most stringent measurements **ATLAS** Preliminary 350E vs=13 TeV, 80.5 fb Data 300 -0.076 ± 0.034 (stat.) \pm 0.019 (syst.) rad ϕ_{s} $B^{\pm} \rightarrow J/\psi K^{\pm}$ $0.068 \pm 0.004 \text{ (stat.)} \pm 0.003 \text{ (syst.)} \text{ ps}^{-1}$ Combinatorial background $\Delta \Gamma_{\rm s}$ 250 B→J/ψX Γ_s \pm 0.001 (stat.) \pm 0.001 (syst.) ps⁻¹ 0.669 200 = $B^{\pm} \rightarrow J/\psi \pi^{\pm}$ 150 [¹sd] ³ال ATLAS Preliminary 100 ∆Γ_s[ps-1 ATLAS Preliminary ---- 7 and 8 TeV, 19.2 fb $\sqrt{s} = 7$, 8 and 13 TeV 68% CL contours √s = 7, 8, and 13 TeV ---- 13 TeV, 80.5 fb⁻¹ **50**E $(\Delta \log \mathcal{L} = 1.15)$ 68% CL contours — Combined 19.2 + 80.5 fb⁻¹ CMS 19.7 fb⁻¹ 0.12 - SM prediction 05 0.10 5.6 5.1 5.2 5.3 5.4 5.5 0.1 m(J/ψ K[±]) [GeV] 0.08 0.08 HCb 3 fb⁻¹ Flavour tagging of B meson: 0.06 0.06 ATLAS 19.2 + 80.5 fb-Calibrations from -0.2 -0.0 0.2 0.4 -0.4 -0.20.2 0 0.4 $\phi_s[rad]$ ϕ [rad] $B^{\pm} \rightarrow J/\psi K^{\pm}$, applied to $B_s^0 \rightarrow J/\psi(\mu^+\mu^-)\phi(K^+K^-)$ **ATLAS-CONF-2019-009;** 80.5 *fb*⁻¹ at 13TeV

Summary

- Hadronic B decays play a key role in checking the SM. Numerous new results are out sincd PIC 2018, only part of them are shown today.
- We have much more Run2 data to analyze, more results are coming
- LHCb currently ongoing a major upgrade for Run-3 and Run-4
 - Preparations underway for a new era of discoveries taking maximum advantage of the High-Luminosity LHC

Backup Slides

Overview of the timeline

- LHC Run-I (2010-2013) & LHC Run-II (2015-2018)
- LHC Run-III, Run-IV (2021-2023, 2026-2029)
 based on LHCb Upgrade [I(a), I(b)]
- LHC Run-V (2031-)
 based on LHCb Upgrade II

