Precision measurements of charm decays

Hai-Bo Li (李海波) Institute of High Energy Physics, CAS, Beijing

XXXIX International Symposium on Physics in Collision National Taiwan University, Taipei, Sep. 16-20, 2019

Outline

- Introduction
- Data @ thresholds from e⁺e⁻ collision: CLEO-c, BESIII
- Hadronic decays
- Rare and forbidden decays
- Lifetime of charmed baryons
- Future and summary

Why still Charm?

- Why Charm is unique to test QCD in low energy?
- Why Charm allows us to overconstrain CKM in B decays?
- Why Charm can be used to probe New Physics beyond Standard Model?

 $\psi(3770) \to D^0 \overline{D^0}$ $\overline{D^0} \to K^+ \pi^-, D^0 \to K^- e^+ \nu$

Precision theory + charm

Theoretical errors dominate width of bands

precision QCD calculations tested with precision charm data at threshold
→ theory errors of a few % on B decay constants & semileptonic form factors

Charm Physics: the Context

	Flavor physics was in the 'sin 2β era'	akin to precision Z.	
Last	Over constrain CKM matrix with precision measurements		
Decade	Discovery potential is limited by systematic errors		
	from non-perturbative QCD		

LHC found Higgs candidate and may uncover the physicsThisbeyond the Standard Model. An outstanding challenge toDecadetheory. Critical need: reliable theoretical techniques& detailed data to calibrate them

TheComplete definition of pert. and non-pert. QCDLatticeCalculate B, D, Y, ψ to a few % in a few years.

Charm can provide the data to test and calibrate non-pert. QCD techniques (especially true at charm threshold).

Charm Lifetimes

D Nonleptonic Decays

Nonleptonic decays dominate the total rate

$$D^{+}(c\overline{d}):\tau_{+} = 1042.7 \pm 6.9 \ fs$$

$$D^{0}(c\overline{u}):\tau_{0} = 410.5 \pm 1.5 \ fs$$

$$\frac{\tau(D^{+})}{\tau(D^{0})} = 2.54 \pm 0.01$$

Quarks or hadrons? in between

Compare to kaons and B-mesons:

$$K^{+}(\bar{s}u): \tau_{+} = 12390 \pm 20 \ ps$$

 $K^{0}(\bar{s}d): \tau_{0} = 178.7 \pm 0.16 \ ps$
 $B^{+}(\bar{b}u): \tau_{+} = 1643 \pm 10 \ fs$
 $B^{0}(\bar{b}d): \tau_{0} = 1528 \pm 9 \ fs$
 $T(B^{+})$
 $T(B^{0})$
Like free quarks

D meson decays

 $\Gamma(D_{(s)}^+ \to \ell^+ \nu_{\ell}) = \frac{G_F^2 f_{D_{(s)}^+}^2}{8\pi} |V_{cd(s)}|^2 m_{\ell}^2 m_{D_{(s)}^+} \left(1 - \frac{m_{\ell}^2}{m_{D_{(s)}^+}^2}\right)^2$ a) Leptonic decay D^+, D_s^+ SM predicts: $(D^+ \rightarrow l^+ \nu) = 2.35 \times 10^{-5} : 1 : 2.65 \ (l = e : \mu:\tau)$ $d\bar{s}$ $f_{D^{+}} = \frac{1}{G_{F} |V_{cd}| m_{l} \left(1 - \frac{m_{l}^{2}}{m_{D^{+}}^{2}}\right)} \sqrt{\frac{8\pi B (D^{+} \rightarrow l^{+} \nu)}{m_{D^{+}} \tau_{D^{+}}}}$ $D^+ \rightarrow e^+ \nu_e, \ \mu^+ \nu_\mu, \ \tau^+ \nu_\tau = D_s^+ \rightarrow e^+ \nu_e, \ \mu^+ \nu_\mu, \ \tau^+ \nu_\tau$ b) Rare decay $D^{\circ} \begin{pmatrix} & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & &$ D^0 $D^0 \rightarrow l^+ l^-$ CKM & GIM suppressed [Short distance <10⁻⁹]

D meson decays

c) Semi-leptonic decay

$$\frac{d\Gamma}{dq^2} = \frac{G_F^2}{24\pi^3} |V_{cx}|^2 p_X^3 |f_+(q^2)|^2$$
$$q^2 = (p_D - p_X)^2 \qquad V_{cx} = V_{cs}, V_{cd}$$
$$= M_D^2 + M_X^2 - 2E_X M_D + 2\vec{p}_D \cdot \vec{p}_X$$

d) Hadronic decay

Precision measurements of decay rates: 1) test SU(3)

- 2) access the relative strong phase
- 3) Improve the theoretical predictions of CPV and mixing
- 4) Light hadron spectroscopy in multi-body decays

The Landscape for open charm

- B factories:
 - --BABAR, Belle
 - -- Belle-II @Super-B factories
- Hadronic Production:
 - --Fixed target
 - --LHCb: on-going now! (finished two runs)
 - --ATLAS and CMS
- e⁺e⁻ Colliders@threshold:
 - -- Precision results dominated by CLEO-c
 - -- BESIII/BEPCII machine: higher luminosity: 10³³ cm⁻²s⁻¹
 - -- Quantum correlations and CP-tagging are unique

Data set near threshold at BESIII Leptonic & Semileptonic decays

Unique data sets at open charm thresholds @BESIII

Double tag method

$f_{D+}|V_{cd}|$ from $D^+ \rightarrow m^+ \nu_{\mu}$

$f_{D+}|V_{cd}|$ from $D^+ \rightarrow \tau^+ \nu_{\tau}$: first observation

$$D_{S}^{+} \rightarrow \mu^{+} \nu_{\mu}$$
 Alex Giman

$$D_{S}^{+} \rightarrow \mu^{+} \nu_{\mu}$$
 Substituting

$$D_{CM}^{+} = 4.178 \text{ GeV}$$

$$Double tag with 14 D_{s}^{+} tag modes$$

$$Duble tag with 14 D_{s}^{+} tag modes$$

$$D_{s}^{+} D_{s}^{+} (e_{s}v^{+}) = (5.49 \pm 0.16 \pm 0.15) \times 10^{-3}$$

$$D_{s}^{+} D_{s}^{+} (e_{s}v^{+}) = (5.48 \pm 0.23) \%$$

$$D_{s}^{+} D_{s}^{+} (D_{s}v^{+}) = (5.48 \pm 0.23) \%$$

$$D_{s}^{+} D_{s}^{+} (D_{s}v^{+}) = (0.48 \pm 0.20) \oplus 0^{-1} (D_{s}v^{+}) \oplus 0^{-1} (D_{s}v^{+})$$

 $\mathcal{B}(D^0 \to K^- \mu^+ \nu) = 3.413(19)(35)\%$

Alex Gilman

From PRD92(2015)072012: $\mathcal{B}_{\text{BESIII}} \left(D^0 \to K^- e^+ \nu \right) = 3.505(14)(33)\%$ $\frac{\mathcal{B} \left(D^0 \to K^- \mu^+ \nu \right)}{\mathcal{B} \left(D^0 \to K^- e^+ \nu \right)} = 0.974(07)(12)$

SM Prediction : 0.97

 $D^{0(+)} \to \pi^{-(0)} \mu^+ \nu$

•Using 2.93 fb⁻¹ of data @ $E_{CM} = 3.773$ GeV •Double tag with 3 D^0 (6 D^+) tag modes

PRL121(2018)171803

 $\mathcal{B}(D^0 \to \pi^- \mu^+ \nu) = 0.272(08)(06)\%$

 $\mathcal{B}(D^+ \to \pi^0 \mu^+ \nu) = 0.350(11)(10)\%$

Alex Gilman

From PRD92(2015)072012:

$$\mathcal{B}_{\text{BESIII}} \left(D^0 \to \pi^- e^+ \nu \right) = 0.295(04)(03)\%$$

$$\frac{\mathcal{B} \left(D^0 \to \pi^- e^+ \nu \right)}{\mathcal{B} \left(D^0 \to \pi^- e^+ \nu \right)} = 0.922(30)(22)$$

$$\frac{\mathcal{B} \left(D^+ \to \pi^0 \mu^+ \nu \right)}{\mathcal{B} \left(D^+ \to \pi^0 e^+ \nu \right)} = 0.964(37)(26)$$
SM Prediction : 0.985

$$\int_{0}^{0} \int_{0}^{0} \int_{0}^{0} \int_{0}^{0} \int_{0}^{1} \int_{0}^$$

$$D^0 \to \overline{K}^0 \pi^- e^+ \nu$$

Alex Gilman

•Using 2.93 fb⁻¹ of data @ $E_{CM} = 3.773$ GeV (~1000 - +data 00 -fit 1000 - blig 500 -1000 -(a) • Double tag with 3 D^0 tag modes Partial Wave Analysis $\mathcal{B}\left(D^{0} \to \overline{K}^{0} \pi^{-} e^{+} \nu\right) = (1.434 \pm 0.029 \pm 0.032)\,\%$ -02 -01 0 01 02 Umaa (GeV) $\frac{\mathcal{B}\left(D^{0} \rightarrow \left(\overline{K}^{0}\pi^{-}\right)_{S-\text{wave}}e^{+}\nu\right)}{\mathcal{B}\left(D^{0} \rightarrow \overline{K}^{0}\pi^{-}e^{+}\nu\right)} = (5.51 \pm 0.97 \pm 0.62)\%^{200}$ (c) 02 04 06 08 $\mathcal{B}\left(D^{0} \to \overline{K}^{*}(892)^{-}e^{+}\nu\right) = (2.033 \pm 0.046 \pm 0.047)\%$ q² (GeV²/c⁴) 300 $K^* d\Gamma/dq^2 \propto V(q^2), A_{1,2}(q^2)$ Events/0.1 200 $r_V \equiv V(0)/A_1(0) = 1.46 \pm 0.07 \pm 0.02$ 100 $r_2 \equiv A_2(0)/A_1(0) = 0.67 \pm 00.6 \pm 0.01$ م_800 First FF Measurements

Alex Gilman

$D \rightarrow Se^+ \nu$

Alex Gilman

 $D\to Se^+\nu$

$$\begin{split} \mathcal{B}\left(D^{0} \to a_{0}^{-}(980)e^{+}\nu\right) &= \frac{\left(1.37^{+0.33}_{-0.29}\pm0.09\right)\times10^{-4}}{\mathcal{B}\left(a_{0}^{-}(980)\to\eta\pi^{-}\right)} \ (6.5\sigma) \\ \mathcal{B}\left(D^{+} \to a_{0}^{0}(980)e^{+}\nu\right) &= \frac{\left(1.66^{+0.81}_{-0.66}\pm0.11\right)\times10^{-4}}{\mathcal{B}\left(a_{0}^{0}(980)\to\eta\pi^{0}\right)} \ (3.0\sigma) \\ \mathcal{B}\left(D^{+} \to f_{0}(500)e^{+}\nu\right) &= \frac{\left(6.30\pm0.43\pm0.32\right)\times10^{-4}}{\mathcal{B}\left(f_{0}(500)\to\pi^{+}\pi^{-}\right)} \ (>10\sigma) \\ \mathcal{B}\left(D^{+} \to f_{0}(980)e^{+}\nu\right) &< \frac{2.8\times10^{-5}}{\mathcal{B}\left(f_{0}(980)\to\pi^{+}\pi^{-}\right)} \ (>10\sigma) \\ \mathcal{B}\left(D^{+} \to f_{0}(980)e^{+}\nu\right) &< \frac{2.8\times10^{-5}}{\mathcal{B}\left(f_{0}(980)\to\pi^{+}\pi^{-}\right)} \ (>10\sigma) \\ \mathcal{B}\left(f_{0}(500)\to\pi\pi\right) &= 100\% \Rightarrow \mathcal{B}\left(f_{0}(500)\to\pi^{+}\pi^{-}\right) = 67\% \\ \Gamma\left(a_{0}(980)\right) &= \Gamma\left(a_{0}(980)\to K\overline{K}\right) + \Gamma\left(a_{0}(980)\to\eta\pi^{0}\right) \\ \Rightarrow \mathcal{B}\left(a_{0}(980)\to\eta\pi^{0}\right) &= (85\pm11)\% \ \text{with PDG2018 avg. of } \frac{\Gamma\left(a_{0}(980)\to K\overline{K}\right)}{\Gamma\left(a_{0}(980)\to\eta\pi^{0}\right)} \end{split}$$

R > 2.7 @ 90% C.L. \Rightarrow Tetraquark favored

High precision charm physics @thresholds: D/Ds

Observables	Exp. measure	BESIII	Belle-II	LHCb
$B(D^+ \rightarrow l\nu)$	$f_D V_{cd} $	1.1%	1.4%	N/A
$B(D_S^+ \to l\nu)$	$f_{Ds} V_{cs} $	1.0%	1.0%	N/A
$\frac{B(D^+ \to l\nu)}{l}$	$f_D V_{cd} $	1.0%	1.4%	N/A
$\overline{B(D_S^+ \to l\nu)}$	$f_{Ds} V_{cs} $			
$d\Gamma(D\to\pi l\nu)/dq^2$	$f_{D\to\pi}(0) V_{cd} $	0.6%	1.0%	N/A
$d\Gamma(D \to K l \nu)/dq^2$	$f_{D\to K}(0) V_{cs} $	0.5%	0.9%	N/A
$d\Gamma(D_S\to K l\nu)/dq^2$	$f_{Ds \to K}(0) V_{cd} $	1.3%	N/A	N/A
$d\Gamma(D_S\to \phi l\nu)dq^2$	$f_{Ds \to \phi}(0) V_{cs} $	1.0%	N/A	N/A

BESIII: 20fb⁻¹ @ 3770 MeV, 6fb⁻¹ @ 4180 MeV, arXiv: 0809.1869 (BESIII physics book) Belle-II: 50 ab⁻¹ @ Y(4S) arXiv: 1808.10567 (Belle-II physics book)

LHCb: : arXiv:1808.08865 for upgrade-II

Hadronic decays

- Relative strong phase from Quantum Correlated data
- Light hadron spectroscopy from charm decays
- Multiple body decays (4-body)

 Require D⁰ and D⁰ decay to a common final state, f(D):

$K^{0}{}_{s}hh$; $K\pi$; $K\pi\pi\pi$; $K\pi\pi^{0}$

- Comparison of B⁻ and B⁺ rates allow γ to be extracted
- But other parameters to be considered

•in particular δ_D – accessed in quantum-correlated D-decays

r_D & δ_D analogous to B-decay quantities. For multibody decays, these vary over Dalitz space

The correlated state

Uncertainties of γ/ϕ_3 measurement at LHCb

• Dominated by LHCb

• Belle II: 1.5⁰ with 50 ab⁻¹ arXiv:1808.10567

• LHCb: arXiv:1808.08865v2

-	-	
Collected / Expected	Year	γ/ϕ_3
luminosity	attained	$\operatorname{sensitivity}$
$3~{ m fb}^{-1}$	2012	8°
$5 { m ~fb^{-1}}$	2018	4°
50 ab^{-1}	2025	1.5°
$50 {\rm ~fb^{-1}}$	2030	$< 1^{\circ}$
$300 {\rm ~fb^{-1}}$	(>)2035	$< 0.4^{\circ}$
	Collected / Expected luminosity 3 fb^{-1} 5 fb^{-1} 50 ab^{-1} 50 fb^{-1} 300 fb^{-1}	Collected / Expected Year luminosity attained 3 fb ⁻¹ 2012 5 fb ⁻¹ 2018 50 ab ⁻¹ 2025 50 fb ⁻¹ 2030 300 fb ⁻¹ (>)2035

Strong-phase inputs from CLEO contribute an ~ 2° uncertainty to γ measurement, and will be comparable with experimental statistical uncertainty at LHCb RUN2.

Wishlist of Quantum Correlated measurements at BESIII

Decay mode	Quantity of interest	Comments
		Binning schemes as those used in the CLEO-c
$D \rightarrow K_S^0 \pi^+ \pi^-$	c_i and s_i	analysis. With 20 fb ^{-1} of data at 3.773 GeV, it might be
		worthwhile to explore alternative binning.
		Binning schemes as those used in the CLEO-c
$D \rightarrow K^0_S K^+ K^-$	c_i and s_i	analysis. With 20 fb^{-1} of data at 3.773 GeV, it might
		be worthwhile to explore alternative binning.
$D \rightarrow K^{\pm} \pi^{\mp} \pi^{+} \pi^{-}$	R, δ	In bins guided by amplitude models, currently
		under development by LHCb.
$D \to K^+ K^- \pi^+ \pi^-$	c_i and s_i	Binning scheme guided by the CLEO-c model [69] or
		potentially an improved model in the future.
$D \to \pi^+\pi^-\pi^+\pi^-$	F_+ or c_i and s_i	Unbinned measurement of F_+ . Measurements of
		F_+ in bins or c_i and s_i in bins could be explored.
$D \to K^{\pm} \pi^{\mp} \pi^0$	R, δ	Simple 2-3 bin scheme could be considered.
$D \rightarrow K_S^0 K^{\pm} \pi^{\mp}$	R, δ	Simple 2 bin scheme where one bin encloses
		the K^* resonance.
$D ightarrow \pi^+ \pi^- \pi^0$	F_+	No binning required as $F_+ \sim 1$.
		Unbinned measurement of F_+ required.
$D \rightarrow K_S^0 \pi^+ \pi^- \pi^0$	F_+ or c_i and s_i	Additional measurements of F_+ or c_i
		and s_i in bins could be explored.
$D \rightarrow K^+ K^- \pi^0$	F_+	Unbinned measurement required. Extensions to
		binned measurements of either F_+ or c_i and s_i .
$D \to K^{\pm} \pi^{\mp}$	δ	Of low priority due to good precision available
		through charm-mixing analyses.

Quantum Correlated measurements with 2.93 fb⁻¹ data

• Strong phase of $D \rightarrow K^-\pi^+$

PLB734(2014)227

- **Strong phase of** $D \rightarrow K_s \pi^+ \pi^-$,
- to be submitted this December

- CP+ fractions of $D \rightarrow \pi^+\pi^-\pi^0$ and $K^+K^-\pi^0$
- Strong phase of D→K_sK⁺K⁻
- **Strong phase of D** \rightarrow K⁻ $\pi^+\pi^0$ and K⁻ $\pi^+\pi^+\pi^-$
- Analysis of D \rightarrow 2($\pi^+\pi^-$)
- Analysis of $D \rightarrow K_s \pi^+ \pi^- \pi^0$ On
- Analysis of $D \rightarrow K_s K^+ \pi^-$ and $K_s K^- \pi^+$

Preliminary

- Near to ready
- Ongoing
- Ongoing
- Ongoing
- Ongoing
- Ongoing

Constraint to γ/ϕ_3 measurement LHCb, arXiv:1808.08865v2

10

Stats. ×LHCb Run-I

Aun I - IV

 10^{2}

Amplitude analysis of $D_s^+ \rightarrow \eta \pi^+ \pi^0$

BESIII: 3.19 fb⁻¹ @ 4180 MeV

 $B_{D_{a}^{+} \to a_{0}(980)\pi} = (2.20 \pm 0.22 \pm 0.34)\%$

known annihilation decays.
Rare decays and lifetime measurements from LHCb

Why Rare charm decays

D. Mitzel

Promising to search for NP...

- rare charm decays involve FCNC c→u transitions at short distances (SD)
 - · in SM only at loop level
- some NP models predict large enhancement in rates and asymmetries [PRD 83 114006 (2011)] [PRD 98 035041 (2018)]
- one of few occasions to investigate up-type quark FCNCs

...but also very challenging!

- SM short-distance contribution highly CKM & GIM suppressed
 - inclusive SM D→Xµ+µ- ≤O(10-9)
- processes dominated by long distance (LD) (tree-level) dynamics, shielding the FCNC processes
- · theoretical description very hard

Observation of the $D^0 ightarrow h^+ h^- \mu^+ \mu^-$

D. Mitzel

39

 overwhelming contribution from LD amplitudes proceeding through intermediate vector resonances screening the SD physics

O(few%) predictions for some NP models [JHEP 1304 135 (2013), PRD 87 054026 (2013)]

Asymmetries in $D^0 o h^+ h^- \mu^+ \mu^-$

- PRL, 121,091801 (2018)
- for the first time, measurements of angular and CP asymmetries in these decays
 - conceptual new and complementary to BF measurements
- asymmetries are sensitive to SD in full range due to SD-LD interference
 - observables are SM null tests
 - O(few%) predictions for some NP models
 [JHEP 1304 135 (2013), PRD 87 054026 (2013), PRD 93, 074001 (2016), PRD 98, 035041 (2018)]
- angular asymmetries
 - forward backward asymmetry $A_{FB} = \frac{\Gamma(\cos \theta_{\mu} > 0) - \Gamma(\cos \theta_{\mu} < 0)}{\Gamma(\cos \theta_{\mu} > 0) + \Gamma(\cos \theta_{\mu} < 0)}$
 - $1(\cos v_{\mu} > 0) + 1(\cos v_{\mu} < 0)$
 - triple product asymmetry

$$A_{2\phi} = \frac{\Gamma(\sin 2\phi > 0) - \Gamma(\sin 2\phi < 0)}{\Gamma(\sin 2\phi > 0) + \Gamma(\sin 2\phi < 0)}$$

CP asymmetry

$$A_{CP} = \frac{\Gamma(D^0 \to h^+ h^- \mu^+ \mu^-) - \Gamma(\overline{D}{}^0 \to h^+ h^- \mu^+ \mu^-)}{\Gamma(D^0 \to h^+ h^- \mu^+ \mu^-) + \Gamma(\overline{D}{}^0 \to h^+ h^- \mu^+ \mu^-)}$$

D. Mitzel

Asymmetries in $D^0 o h^+ h^- \mu^+ \mu^-$

select D⁰ from flavour sepecific D^{*+} \rightarrow D⁰ π ⁺ decays

PRL, 121,091801 (2018)

Measurement strategy

measure A_{FB}, A_Φ and A_{CP} binned and integrated in dimuon mass

- D. Mitzel
- 5/fb recorded 2011-2016 $m(\mu^+\mu^-)$ [MeV/ c^2] Decay mode high mass low mass ρ/ω NA = not available η Ø $D^0 \rightarrow K^+ K^- \mu^+ \mu^-$ NS < 525> 565NA NA NS = no signal NS $D^0 \rightarrow \pi^+\pi^-\mu^+\mu^-$ < 525565-780 780-950 950-1020 1020-1100 NS
- total yields

٠

٠

- D⁰→π+π-μ+μ-: 1.1k
- D⁰→K+K-µ+µ-: 110
- sensitivity on asymmetries of a few %

41

Asymmetries in $D^0 ightarrow h^+ h^- \mu^+ \mu^-$

PRL, 121,091801 (2018)

Total asymmetries

$$\begin{split} A_{CP}(D^0 \to \pi^+ \pi^- \mu^+ \mu^-) &= (4.9 \pm 3.8 \pm 0.7)\%, \\ A_{FB}(D^0 \to \pi^+ \pi^- \mu^+ \mu^-) &= (3.3 \pm 3.7 \pm 0.6)\%, \\ A_{2\phi}(D^0 \to \pi^+ \pi^- \mu^+ \mu^-) &= (-0.6 \pm 3.7 \pm 0.6)\%, \\ A_{CP}(D^0 \to K^+ K^- \mu^+ \mu^-) &= (0 \pm 11 \pm 1)\%, \\ A_{FB}(D^0 \to K^+ K^- \mu^+ \mu^-) &= (0 \pm 11 \pm 2)\%, \\ A_{2\phi}(D^0 \to K^+ K^- \mu^+ \mu^-) &= (9 \pm 11 \pm 1)\% \\ \text{uncertainties are statistical and systematic} \end{split}$$

- all asymmetries consistent with zero
- no dependency on dimuon mass observed (also true for D⁰→K⁺K⁻µ⁺µ⁻)

Search for rare decay $\Lambda_c \rightarrow p \mu^+ \mu^-_{\text{LHCb: arXiv:1712.07938}}$

- first measurement of rare decays of D. Mitzel charmed baryons at LHCb
 - total BF dominated by resonant LD contributions:
 - $\Lambda_c^+ \rightarrow p \Phi(\rightarrow \mu^+ \mu^-)$
 - $\Lambda_c^+ \rightarrow p \rho / \omega (\rightarrow \mu^+ \mu^-)$
 - sensitivity to SD physics away from resonances in dimuon mass

LHCb analysis strategy

- define three dimuon mass regions: Φ , ρ/ω and non-resonant (NR)
 - measurement/limit of the BF in ρ/ω and NR region relative to $\Lambda_c^+ \rightarrow p\Phi(\rightarrow \mu^+\mu^-)$
- full Run 1 data (3/fb)

Search for rare decay $\Lambda_c \rightarrow p\mu^+\mu^-$ D. Mitzel

upper limit on non-resonant component

 $\mathcal{B}(\Lambda_c^+ \to p \mu^+ \mu^-) < 9.6 \times 10^{-8}$ at 95% CL

- ~1000x better than previous result from BaBar [PRD 84 072006 (2011)]
- first observation of Λ_c+→pµ+µ- in the ρ/ω region of the dimuon mass spectrum

 $\mathcal{B}(\Lambda_c^+ \to p[\mu^+\mu^-]_{\rho/\omega}) = (9.4 \pm 3.2 \pm 1.0 \pm 2.0) \times 10^{-8}$

 uncertainties are statistical, systematic and due to the BF of normalization mode

Precision lifetime measurements of charmed baryons

Using run-I data: 3.0 fb⁻¹

LHCb: arXiv:1906.08350

• Decay channels: $\Lambda_c^+ \to pK^-\pi^+, \, \Xi_c^+ \to pK^-\pi^+, \, \Xi_c^0 \to pK^+K^-\pi^+$

45

Precision lifetime measurements of charmed baryons

Fit decay time spectra to get lifetime information

LHCb: arXiv:1906.08350

 $\Xi_{p}^{-} \rightarrow \Xi_{c}^{0} \mu^{-} \overline{\nu} X$

0.4

+ Data

 Ξ_c^0 decay time [ps]

0.6

Fit

LHCb

0.2

 $\tau_{A^{\pm}_{a}} = 203.5 \pm 1.0 \pm 1.3 \pm 1.4 \text{ fs},$

 $\tau_{\Xi_c^+} = 456.8 \pm 3.5 \pm 2.9 \pm 3.1 \text{ fs},$

 $\tau_{\Xi_c^0} = 154.5 \pm 1.7 \pm 1.6 \pm 1.0 \text{ fs},$

 $\tau_{\Omega_{0}^{0}} = 268 \pm 24 \pm 10 \pm 2$

 10^{2}

The measurements are approximately 3–4 times more precise than the current world average values

LHCb: arXiv:1807.02024

Near threshold data : $e^+e^- \rightarrow \Lambda_c^+ \overline{\Lambda}_c^-$

Measurement using the threshold pair-productions via e⁺e⁻ annihilations is unique: the most simple and straightforward

First time to systematically study charmed baryon at threshold!

Absolute BFs of Λ_c^+ hadronic decays

Absolute BFs for $\Lambda_c^+ \rightarrow \Lambda l^+ \nu_l$

BESIII: 0.6 fb⁻¹ @ 4600 MeV

- First absolute measurement of the semi-leptonic decay (Statistics limited)
- Important input for implementing and calibrating the Lattice QCD calculations
- Best precision to date: twofold improvement
- $\Gamma[\Lambda_c^+ \rightarrow \Lambda \mu^+ \nu_{\mu}] / \Gamma[\Lambda_c^+ \rightarrow \Lambda e^+ \nu_e] = 0.96 \pm 0.16 \pm 0.04$

Observation of $\Lambda_{c}^{+} \rightarrow n K_{s}^{0} \pi^{+}$

BESIII: 0.6 fb⁻¹ @ 4600 MeV

• First direct measurement of Λ_c^+ decay involving the neutron in the final state.

- 2-D fitting extract 83±11 net signals => $B[\Lambda_c^+ \rightarrow nK_s^0\pi^+] = (1.82\pm0.23\pm0.11)\%$
- B[$\Lambda_{\mathbf{c}}^{+} \rightarrow \mathbf{n}\mathbf{K}^{\mathbf{0}}\pi^{+}$]/B[$\Lambda_{\mathbf{c}}^{+} \rightarrow \mathbf{p}K^{-}\pi^{+}$]=0.62±0.09; B[$\Lambda_{\mathbf{c}}^{+} \rightarrow \mathbf{n}\mathbf{K}^{\mathbf{0}}\pi^{+}$]/B[$\Lambda_{\mathbf{c}}^{+} \rightarrow \mathbf{p}K^{0}\pi^{0}$]=0.97±0.16
- A test of final state interactions and isospin symmetry in the charmed baryon sector. [PRD93, 056008 (2016)]

The inclusive channel $\Lambda_c^+ \rightarrow \Lambda + X$

BESIII: 0.6 fb⁻¹ @ 4600 MeV

$$N^{\mathrm{sig}} = N^{\mathrm{S}} - \frac{N^{\mathrm{A}} + N^{\mathrm{B}}}{2} - f \cdot (N^{\mathrm{D}} - \frac{N^{\mathrm{C}} + N^{\mathrm{E}}}{2})$$

 Comparison with K+X will shed light on the internal dynamics

- In the ST modes of $\Lambda_c^+ \rightarrow pK^-p^+$ and pK_s^0 , to measure the probability of find a Λ in the final states.
- Extract yields from 2D distributions in bins of $p-|\cos\theta|$
- Data-driven 2D efficiency correction using several Λ control samples.
- $\mathcal{B}(\Lambda_{C}^{+} \rightarrow \Lambda + X) = (38.2^{+2.8}_{-2.2} \pm 0.9)\%$ (excl. rate (24.5 ± 2.1)% observed, indicates ~1/3 BFs are unknown)
- $A_{cp} = (2.1^{+7.0}_{-6.6} \pm 1.6)\%$ (No CPV is observed.)

$\Lambda_c^+ \rightarrow e^+ \nu_e^+ X$

BESIII: 0.6 fb⁻¹ @ 4600 MeV

PRL 121 251801(2018)

- Current PDG: $BF(\Lambda_c^+ \rightarrow e + X) = (4.5 \pm 1.7)\%$.
- Large rate, but also with large uncertainty
- Tagged with $\Lambda_{\mathbf{c}}^+ \rightarrow \mathsf{p} K^- \pi^+$ and $\mathsf{p} K_s^0$
 - $\implies \quad \mathcal{B}(\Lambda_c^+ \to X e^+ \nu_e) = (3.95 \pm 0.34 \pm 0.09)\%$

$$\stackrel{=>}{\underset{\mathcal{B}(\Lambda_c^+ \to \Lambda e^+ \nu_e)}{\xrightarrow{}}} = (91.9 \pm 12.5 \pm 5.4)\%$$

• The $\Lambda l^+ \nu_l$ dominate the $l^+ + X = B$ (p $K l^+ \nu_l$)~10⁻³.

Result	$\Lambda_c^+ \to X e^+ \nu_e$	$\frac{\Gamma(\Lambda_c^+ \to X e^+ \nu_e)}{\bar{\Gamma}(D \to X e^+ \nu_e)}$
BESIII	3.95 ± 0.35	1.26 ± 0.12
MARK II [7]	4.5 ± 1.7	1.44 ± 0.54
Effective-quark Method $[9, 10]$		1.67
Heavy-quark Expansion [11]		1.2

52

Lineshape of $e^+e^- \to \Lambda_c^+ \bar{\Lambda}_c^-$

Belle: PRL101, 172001 (2008) BESIII: PRL120,132001(2018)

Machine upgrades:

- ✓ Energy upgrades
- ✓ Lumi improvement @ higher energy
- ✓ "Topup" injections

Some tensions between Belle and BESIII data on $e^+e^- o \Lambda_c^+ ar\Lambda_c^-$

Access to the heavier charmed baryons

Competition and complementary -future

- Super-KEKB/Belle-II (50 ab⁻¹ ccbar cross-section = 1.0 nb@Y(4S)) 50 billion arXiv: 1808.10567 (Belle-II physics book)
- > Super-tau-charm factory (5 ab⁻¹ ccbar cross-secion = 6.5 nb@ ψ (3770)) 30 billion
- > LHCb and its upgrades (50 fb⁻¹ \rightarrow 10¹¹ reconstructed charm mesons)

arXiv:1808.08865 (LHCb upgrade-II)

proton-antiproton collisions (PANDA...)

> SHiP experiment at CERN: (10¹⁸ D mesons, 10¹⁶ τ , 10²⁰ γ)

arXiv:1504.04855 ; arXiv:1807.02746

Physics programmes for future data taking at BESIII

- 10-16 fb⁻¹ on ψ(3770)
- 6 fb⁻¹ at 4.18 GeV → Ds meson
- 5 fb⁻¹ at 4.64 GeV for the charmed baryon
- Scan at the highest energy?
- Large Zc samples: 5 fb⁻¹ each at 4.23, 4.42 GeV
- High-statistics data samples around 2.2, 2.4 GeV
- 3 billion ψ (3686)
- ...wishlist comprises about 40 fb⁻¹

BESIII has to run another 8 - 10 years to collect these data sets with current luminosity!

From the white paper

Summary

SM predictions

Thank you for your attentions!

Synergy with LHCb to measure γ/ϕ_3

- Has very small theory uncertainty O(10⁻⁷) JHEP01,051(2014)
- Over-constrain the CKM triangle to probe for NP, which may cause a sizeable
- 4° effect. PRD92,033002(2015)

$$\begin{aligned} \alpha &= \arg\left(-\frac{V_{td}V_{tb}^*}{V_{ud}V_{ub}^*}\right) \equiv \phi_2, \\ \beta &= \arg\left(-\frac{V_{cd}V_{cb}^*}{V_{td}V_{tb}^*}\right) \equiv \phi_1, \\ \gamma &= \arg\left(-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}\right) \equiv \phi_3, \end{aligned}$$

Accessed by the interference between $b \rightarrow cus$ and $b \rightarrow ucs$

Decays: $B \rightarrow DK$, $B \rightarrow D^*K$, $B \rightarrow D\pi$, $B \rightarrow D^*\pi$, $B \rightarrow D^{(*)}K\pi$,

Methods: GGSZ, ADS, GLW: strong phase differences of neutral D

10 years data taking at BESIII

Data sets collected so far include,

- $> 10 \times 10^9 J/\psi$ events
- \succ 0.5×10⁹ ψ' events
- Scan data [2.0, 3.08] GeV; [3.735, 4.600] GeV

130 energy points, about 2.0 fb⁻¹

Large data sets for XYZ study above 4.0 GeV about 12 fb⁻¹

Unique dat	a sets a	t open	charm	thresho	lds
Unique dat	a sets a	t open	charm	un cono	iu.

3.77	2.93	DD
4.008	0.48	DD^* , $\psi(4040)$, $D_{\rm S}^+D_{\rm S}^-$
4.18	3.2	$D_{s}D_{s}^{*}$
4.6	0.59	$\Lambda_c^+ \bar{\Lambda}_c^-$

Leptonic and semileptonic charm decays

$$\Gamma(D_{(s)}^{+} \to \ell^{+} \nu_{\ell}) = \frac{G_{F}^{2} f_{D_{(s)}^{+}}^{2}}{8\pi} |V_{cd(s)}|^{2} m_{\ell}^{2} m_{D_{(s)}^{+}} \left(1 - \frac{m_{\ell}^{2}}{m_{D_{(s)}^{+}}^{2}}\right)^{2} \frac{d\Gamma}{dq^{2}} = X \frac{G_{F}^{2} |V_{cd(s)}|^{2}}{24\pi^{3}} p^{3} |f_{+}(q^{2})|^{2}$$

IV_{cs(d)}: test on CKM matrix unitarity
 f_{D(s)+}, f₊^{K(π)} (0): test LQCD calculations
 Branching fractions allow for LFU tests

$$U = \begin{bmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{bmatrix}$$

62

 $f_{D_s}^+ |V_{cs}|$

63

Observation of $\Lambda_{c}^{+} \rightarrow n K_{s}^{0} \pi^{+}$

BESIII: 0.6 fb⁻¹ @ 4600 MeV

• First direct measurement of Λ_c^+ decay involving the neutron in the final state.

- 2-D fitting extract 83±11 net signals => $B[\Lambda_c^+ \rightarrow nK_s^0\pi^+] = (1.82\pm0.23\pm0.11)\%$
- B[$\Lambda_{\mathbf{c}}^{+} \rightarrow \mathbf{n}\mathbf{K}^{\mathbf{0}}\pi^{+}$]/B[$\Lambda_{\mathbf{c}}^{+} \rightarrow \mathbf{p}K^{-}\pi^{+}$]=0.62±0.09; B[$\Lambda_{\mathbf{c}}^{+} \rightarrow \mathbf{n}\mathbf{K}^{\mathbf{0}}\pi^{+}$]/B[$\Lambda_{\mathbf{c}}^{+} \rightarrow \mathbf{p}K^{0}\pi^{0}$]=0.97±0.16
- A test of final state interactions and isospin symmetry in the charmed baryon sector. [PRD93, 056008 (2016)]

Measurements of DCS decay D^+ , D_s^+

Previous world average from PDG2018

LHCb: arXiv:1810.03138

Ratio	Value $[\times 10^{-3}]$	$\frac{\mathcal{B}(D^+ \to K^- K^+ K^+)}{\mathcal{B}(D^+ \to K^- K^+ K^+)} = (6.541 \pm 0.025 \pm 0.042) \times 10^{-4},$
$\mathcal{B}(D^+\!\rightarrow K^-K^+K^+)/\mathcal{B}(D^+\!\rightarrow K^-\pi^+\pi^+)$	0.95 ± 0.22	$\mathcal{B}(D^+ \to K^- \pi^+ \pi^+)$
$\mathcal{B}(D^+\!\rightarrow\pi^-\pi^+K^+)/\mathcal{B}(D^+\!\rightarrow K^-\pi^+\pi^+)$	5.77 ± 0.22	$\frac{\mathcal{B}(D^+ \to \pi^- \pi^+ K^+)}{\mathcal{B}(D^+ \to \pi^- \pi^+ K^+)} = (5.231 \pm 0.009 \pm 0.023) \times 10^{-3}.$
$\mathcal{B}(D_s^+ \to \pi^- K^+ K^+) / \mathcal{B}(D_s^+ \to K^- K^+ \pi^+)$	2.33 ± 0.23	$\mathcal{B}(D^+ \to K^- \pi^+ \pi^+) \qquad (0.201 \pm 0.000 \pm 0.020) \times 10^{-5},$
$\mathcal{B}(D^+\!\rightarrow K^-\!K^+\pi^+)/\mathcal{B}(D^+\!\rightarrow K^-\pi^+\pi^+)$	105.9 ± 1.8	$\frac{\mathcal{B}(D_s^+ \to \pi^- K^+ K^+)}{\pi^- K^+ K^+} = (2.372 \pm 0.024 \pm 0.025) \times 10^{-3}$
	· ·	$-\mathcal{B}(D_s^+ \to K^- K^+ \pi^+) = (2.572 \pm 0.024 \pm 0.026) \times 10^{-5},$
$\mathcal{B}(D^+ \to K^- K^+ K^+) = (5.87 \pm 0.02 \pm 0.04 \pm 0.04 \pm 0.04)$	$(0.18) \times 10^{-5},$	
$\mathcal{B}(D^+ \to \pi^- \pi^+ K^+) = (4.70 \pm 0.01 \pm 0.02 \pm 0.01 \pm 0.01 \pm 0.02 \pm 0.01 \pm 0$	$(0.15) imes 10^{-4},$	$\frac{\mathcal{B}(D^+ \to K^- K^+ \pi^+)}{\mathcal{D}(D^+ \to K^- K^+ \pi^+)} = (10.282 \pm 0.002 \pm 0.068) \times 10^{-2},$
$\mathcal{B}(D_s^+ \to \pi^- K^+ K^+) = (1.293 \pm 0.013 \pm 0.013)$	$(4 \pm 0.040) \times 10^{-4}$	$B(D^+ \to K^- \pi^+ \pi^+)$
$\mathcal{B}(D^+ \to K^- K^+ \pi^+) = (9.233 \pm 0.002 \pm 0.06)$	$1 \pm 0.288) \times 10^{-3}$, 67

Upgrades to detectors: past and future

Detector has running smoothly, performance generally excellence.

- ✓ Endcap TOF upgrade (2015) single layer plastic scintillator was replaced with multi-gap RPC. Time resolution: 110 ps → 60 ps 95% π/K separation up to 1.4 GeV
- ✓ Inner most part of the drift chamber:
 - 1) New inner drift chamber is ready
 - 2) CGEM is in progress
- ✓ Super Conduct magnet : new valve box

Advantage: unique data near to the thresholds

- ➢ D/Ds/A_c hadrons near thresholds: precision branching fractions, unique access to the relative phase, test of SM
- Hyperon and charmed baryon Spin polarization in QC
- Form-factors in the time-like production
- CP violation with quantum-correlated pair productions of hyperons and charmed baryon

Roadmap of CP violation in flavored hadrons

- In 1964, the first CPV was discovered in Kaon ;
- In 2001, CPV in B was established by two B-factories;
- In 2019, CPV discovered in D meson: 10⁻⁴, 10⁸ reconstructed D mesons (LHCb)
- 1980 James Yatson Frenin Values Values of Fitch Salues Sa

- All are consistent with CKM theory in the Standard model
- But no evidence was found in strange baryons?

Baryon asymmetry of the Universe means that there must be non-SM CPV source.

CPV in hyperon decays and New physics

Flavor-SU(3) Octet of spin ¹/₂

Flavor-SU(3) Decuplet of spin 3/2

71

Why Hyperon physics at BESIII?

10 billion J/psi events collected

- Large BRs in J/psi decays
- Quantum correlated pair productions
- **Easy to reconstruct**

Background free

Decay mode	$\mathcal{B}(imes 10^{-3})$	$N_B ~(\times 10^6)$
$J/\psi ightarrow \Lambda ar\Lambda$	1.61 ± 0.15	16.1 ± 1.5
$J/\psi \rightarrow \Sigma^0 \bar{\Sigma}^0$	1.29 ± 0.09	12.9 ± 0.9
$J/\psi \rightarrow \Sigma^+ \bar{\Sigma}^-$	1.50 ± 0.24	15.0 ± 2.4
$J/\psi \rightarrow \Sigma(1385)^- \bar{\Sigma}^+$ (or c.c.)	0.31 ± 0.05	3.1 ± 0.5
$J/\psi \rightarrow \varSigma(1385)^- \bar{\varSigma}(1385)^+$ (or c.c.)	1.10 ± 0.12	11.0 ± 1.2
$J/\psi ightarrow \Xi^0 \bar{\Xi}^0$	1.20 ± 0.24	12.0 ± 2.4
$J/\psi \rightarrow \Xi^- \bar{\Xi}^+$	0.86 ± 0.11	8.6 ± 1.0
$J/\psi \rightarrow \Xi (1530)^0 \bar{\Xi}^0$	0.32 ± 0.14	3.2 ± 1.4
$J/\psi \rightarrow \Xi (1530)^- \bar{\Xi}^+$	0.59 ± 0.15	5.9 ± 1.5
$\psi(2S) \rightarrow \Omega^- \bar{\Omega}^+$	0.05 ± 0.01	0.15 ± 0.03

Hai-Bo Li, arXiv:1612.01775 A. Adlarson, A. Kupsc, arXiv:1908.03102

The number of reconstructed hyperonanti-hyperon pairs will be a few millions.

Advantage at e⁺e⁻ machine

Known initial 4-momentum Strongly boosted Substantial polarization Decay with neutron & π^0 Decay with invisibles

$$|\Lambda\bar{\Lambda}\rangle^{C=-1} = \chi_1 \frac{1}{\sqrt{2}} [|\Lambda\rangle|\bar{\Lambda}\rangle - |\bar{\Lambda}\rangle|\Lambda\rangle],$$

$$\alpha(\Lambda \to p\pi^-) = \alpha_-$$

$$\alpha(\bar{\Lambda} \to \bar{p}\pi^+) = \alpha_+$$

$$\alpha(\bar{\Lambda} \to \bar{n}\pi^0) = \bar{\alpha}_0$$

$$\alpha(\Lambda \to n\pi^0) = \alpha_0$$

Correlated 5-dim. angular distribution

 $\mathcal{W}(\xi; \alpha_{\psi}, \Delta \Phi, \alpha_{-}, \alpha_{+}) = 1 + \alpha_{\psi} \cos^2 \theta_{\Lambda}$

$$+ \alpha_{-}\alpha_{+} \left[\sin^{2}\theta_{\Lambda} \left(n_{1,x}n_{2,x} - \alpha_{\psi}n_{1,y}n_{2,y} \right) + \left(\cos^{2}\theta_{\Lambda} + \alpha_{\psi} \right) n_{1,z}n_{2,z} \right] \\ + \alpha_{-}\alpha_{+}\sqrt{1 - \alpha_{\psi}^{2}} \cos(\Delta\Phi) \sin\theta_{\Lambda}\cos\theta_{\Lambda} \left(n_{1,x}n_{2,z} + n_{1,z}n_{2,x} \right) \\ + \sqrt{1 - \alpha_{\psi}^{2}} \sin(\Delta\Phi) \sin\theta_{\Lambda}\cos\theta_{\Lambda} \left(\alpha_{-}n_{1,y} + \alpha_{+}n_{2,y} \right),$$

If Λ is polarized, both a_{-} and a_{+} can be measured simultaneously, which allow us to search for CPV

$$P_{y}(\cos\theta_{\Lambda}) = \frac{\sqrt{1-\alpha_{\psi}^{2}}\sin(\Delta\Phi)\cos\theta_{\Lambda}\sin\theta_{\Lambda}}{1+\alpha_{\psi}\cos^{2}\theta_{\Lambda}}$$

74

BESIII results with 1.3 billion J/ψ

Nature Physics May 2019 arXiv:1808.08917

Parameters	This work	Previous results	comments on these 3 items:
α_{ψ}	$0.461 \pm 0.006 \pm 0.007$	0.469 ± 0.027 ¹⁴	4 1) 3x precision improvement
$\Delta \Phi$	$(42.4 \pm 0.6 \pm 0.5)^{\circ}$	_	-same data sample-
α_	$0.750 \pm 0.009 \pm 0.004$	0.642 ± 0.013 ¹⁶	(+2) ~7 σ upward shift from
α_+	$-0.758 \pm 0.010 \pm 0.007$	-0.71 ± 0.08 ¹⁶	all previous measurements
$\bar{\alpha}_0$	$-0.692 \pm 0.016 \pm 0.006$	_	
A_{CP}	$-0.006 \pm 0.012 \pm 0.007$	0.006 ± 0.021 ¹⁶	
$\bar{\alpha}_0/\alpha_+$	$0.913 \pm 0.028 \pm 0.012$	-	(3) ~3 σ difference from 1.
			Is this reasonable?
			$= \frac{1}{2}$ rule in Kaon decay

Monochromatic collision: factor of 10 from reduction of e⁺e⁻ CM spread

CP violation with 10 billion J/ψ , plus monochromator

1.3 billion	$\frac{J}{\psi}$ CP test: $A_{\Lambda} = -0.$	$A_{\Lambda} = \frac{6}{2}$	$\frac{\alpha + \alpha_+}{\alpha \alpha_+}$	Previous result: A _Λ = 0.013 ± 0.021 PS185 PRC54(96)1	Adlarson and Kupsc, arXiv:1908.03102 I.I. Bigi, X.W. Kang, HBL arXiv:1704.04708	
		J/ Events	$\psi \rightarrow \Lambda \Lambda$ Error A _A		$J/\psi \to \Xi^- \bar{\Xi}^+ (\Xi \to \Lambda \pi)$	
	BESIII(2018) BESIII	4.2 •10 ³ 3 •10 ⁶	5 · 10 ⁻²	1.31 10 ³ J/ψ 10^{10} J/ψ L=0.47 · 10 ³³ ΔE = 0.9 MeV	2×10 ⁻³	
	SuperTauCharm	6 · 10 ⁸	3 · 10-4	L=10 ³⁵ cm ⁻² s ⁻¹ 2. 10 ¹² J/ $\psi \Delta E = 0.9$ MeV		
	SuperTauCharm + reduced ∧E	3 · 10 ⁹	1.4 · 10-4	L=10 ³⁰ cm ⁻² s ⁻¹ 10 ¹³ J/ ψ $\Delta E < 0.9$ MeV??	1×10 5	

$$\begin{array}{l} -3 \times 10^{-5} \leq A_{\Lambda} \leq 4 \times 10^{-5} \\ -2 \times 10^{-5} \leq A_{\Xi} \leq 1 \times 10^{-5} \\ -5 \times 10^{-5} \leq A_{\Xi\Lambda} \leq 5 \times 10^{-5} \end{array}$$
CKM
Tandean, Valencia PRD67, 056001

77