Constraining Triple-Top Production via Four-Top and Top-Pair Studies

Tanmoy Modak

National Taiwan University

ArXiv:1906.09703 (Accepted to PLB); Phys.Lett. B776 379-384.

with W.-S.Hou and M. Kohda

Physics in Collision 2019

XXXIX International Symposium on Physics in Collision

Department of Physics, National Taiwan University, Taipei, Taiwan | September 16-20, 2019

Overview

- Multi top-quark production. Staple programs at the LHC.
- Both ATLAS and CMS covered: Top-pair, single-top, four-top.
- No study for triple-top production.
- In SM triple-top cross section is few fb. Excellent probe for New Physics.
- Triple-top cross section: at pb level in general 2HDM (G2HDM).

Extra Yukawas : ρ_{tc} , ρ_{tt} . Triple-top: $cg \rightarrow tA^0/tH^0 \rightarrow tt\bar{t}$.

• Bonus: Discovery may shed light on the observed *Baryon Asymmetry of the Universe*.

Multi-top productions at LHC

SM Top-pair

 $t\overline{t}:\sigmapprox830~{
m pb}$ @13 TeV (LHC cross sec. WG)

SM Single-top

t-channel single-top : $\sigma \approx 217$ pb s-channel single-top : $\sigma \approx 10$ pb $Wt: \sigma \approx 70$ pb

SM Four-top

4t: $\sigma \approx 10 \text{ fb}$ @13 TeV

(J. Alwall et al. JHEP '14)

(LHC cross sec. WG)

See also talk By Anna Lipniacka

SM triple-top

 $\sigma \approx 2 \; {\rm fb}$ @14 TeV

(Barger et al. PLB '10)

(W.-S Hou, M. Kohda, TM PLB '18) **Triple-top (G2HDM):** 1. SM 3*t* at fb level. $cg \rightarrow tS^0 \rightarrow tt\bar{t}$ where, $S^0 \equiv A^0 or H^0$ 2. Clean 3*b*-jets, 3-lepton final state A^{0}/H^{0} c \mathcal{C} 9 9999

 $\rho_{tc}(\rho_{ct})$

t

Same-sign top:

$$cg \to tS^0 \to tt\bar{c}$$

May emerge earlier than triple-top

(See also Hou, Lin, Ma, Yuan, PLB '97)

The Yukawa Sector

• 2HDM without Z_2 : Both doublets couple with up- and down-type fermions.

After diagonalization of fermion mass matrices: Two different Yukawas. λ^F and ρ^F with $\lambda_f = \frac{\sqrt{2}m_f}{v}$.

 \checkmark λ^F diagonal and real; ρ^F non-diagonal and in general complex.

$$-\frac{1}{\sqrt{2}} \sum_{F=U,D,L} \bar{F}_{iL} \left[\left(-\lambda_{ij}^{F} s_{\gamma} + \rho_{ij}^{F} c_{\gamma} \right) h^{0} \right]$$
(see e.g., Davidson, Haber PRD '05)
(see also discussion in Hou & Kikuchi, EPL'18)
$$+ \left(\lambda_{ij}^{F} c_{\gamma} + \rho_{ij}^{F} s_{\gamma} \right) H^{0} - i \operatorname{sgn}(Q_{F}) \rho_{ij}^{F} A^{0} \right] F_{jR} + \text{h.c.}$$
$$\cos \gamma = c_{\gamma}: \text{mixing angle bwtween } h^{0}(125) \text{ and } H^{0}$$

 \checkmark Complex ρ_{tt} and ρ_{tc} : Electroweak Baryogenesis

(Fuyuto, Hou, Senaha PLB '18)

Parton level cross sections

(W.-S Hou, M. Kohda, TM PLB '18)

Parton level cross sections at LO:

Triple-top discovery

@14 TeV with $3b3\ell$ signature

 5σ for : e.g. if $\rho_{tc} = 0.5$, $\rho_{tt} = 1$ and $m_{S^0} \leq 680$ GeV.

Constraint on triple-top from 4t

(W.-S Hou, M. Kohda, TM, arXiv:1906.09703)

CMS search for SM 4-top: SR8

13 TeV 36 fb⁻¹ (CMS, EPJC '16) at least $3\ell(\ell = e, \mu) +$ at least 4 jets with 3 b-tagged

expctd. events: 2.62 ± 0.54 observed events: 2

SR12

(CMS, arXiv:1908.06463)

 $\begin{array}{c} 13 \ {\rm TeV} \ 137 \ {\rm fb}^{-1} \\ {\rm event \ selection: \ same \ as \ SR8} \\ {\rm but \ no. \ of \ jets \ restricted \ to \ 4} \end{array}$

expctd. events: 2.1 ± 0.6 observed events: 2

Excess from CMS

(Fig. from CMS PAS HIG-17-027)

See also talk By Stefania Spagnolo

• $gg \to A \to t\bar{t}$

(CMS PAS HIG-17 027, arXiv:1908.01115)

$$\mathcal{L}_{\text{Yukawa,H}} = -g_{\text{Ht}\bar{t}} \frac{m_{\text{t}}}{v} \overline{t} t\text{H}, \qquad \mathcal{L}_{\text{Yukawa,A}} = ig_{\text{At}\bar{t}} \frac{m_{\text{t}}}{v} \overline{t} \gamma_{5} t\text{A}$$
$$g_{At\bar{t}}/g_{Ht\bar{t}} \equiv \text{Coupling modifier}$$

- 3.5 σ excess around $m_A = 400$ GeV $\Gamma_A/m_A \sim 4\%$
 - 1. $|m_H m_A|$ should not be large. 2. $gg \to t\bar{t}A \to t\bar{t}t\bar{t}$ limit should be respected
 - 3. $g_{At\bar{t}}/g_{Ht\bar{t}}$ in general complex

Outlook

- NFC may be overkill. 2HDM without Z_2 . Extra Yukawas: ρ_{tt} , and FCNH: ρ_{tc} .
- Extra Yukawas: leading to novel triple-top (and same-sign top) signature at LHC.
- Triple-top may require HL-LHC, however Same-sign top may emerge with 300 fb⁻¹ data.
- Discovery may help understand the Matter-Antimatter asymmetry of the Universe.

Thank You

The Higgs sector

CP conserving 2HDM without Z_2 :

mixing angle between h^0 and H^0 : $\cos \gamma = c_{\gamma}$

Alignment without decoupling:

$$c_{\gamma} \simeq \frac{-\eta_6 v^2}{m_{H^0}^2 - m_{h^0}^2};$$

 $c_{\gamma} \sim 0.2$ -0.3 even for $m_{H^0} \sim 200$ -300 GeV

Excellent scope for LHC search

Same-sign top discovery

$$\mathcal{Z} = \sqrt{2[(S+B)\ln(1+S/B) - S]}$$

- H^0 or A^0 alone : 5σ for $\rho_{tc} = 1$ and $m_{S^0} \leq 550$ GeV.
- Discovery: easier for small H^0 A^0 mass splitting case.
- Discovery could indicate ρ_{tc} driven BAU.

Same-sign top

MadGraph5_aMC + Pythia 6.4 + Delphes-3.4.0

+Non-prompt $\sim 1.5 \times t\bar{t}W$ (CMS EPJC '17)

Signal at LO. Backgrounds with QCD corrections included.

Triple-top

$$pp \to tS^0 + X \to tt\bar{t} + X$$

Event selection:

at least 3 leptons, $E_T^{\text{miss}} \geq 3 \text{jets}$ with $\geq 3b$ tagged

denoted as $(3b3\ell)$

Backgrounds	Cross section (fb)		
$t\bar{t}Z$ +jets	0.0205	(0.0026)	parenthesis:
$t \overline{t} W b$	0.0017	(0.0015)	impact of
tZjb	0.0002	(-)	Z-pole veto
3t + j	0.0001	(0.0001)	
3t + W	0.0004	(0.0003)	
$t \overline{t} h$	0.0015	(0.0013)	
4t	0.0232	(0.0209)	
$t\bar{t}$ +jets (fake)	0.0026	(0.0025)	

Signal at LO. Backgrounds with QCD corrections included.