

Precise Measurements of the Higgs Boson

Mingshui Chen (IHEP Beijing) On behalf of ATLAS and CMS Collaborations

XXXIX International Symposium on Physics in Collision, Taipei September 16-20, 2019

The Higgs Boson

- The Higgs boson, discovered in 2012 by ATLAS and CMS, "completes" the Standard Model of particle physics
 - It's the quantum of the Higgs field, whose spontaneous symmetry breaking is responsible for generating particle masses
- The SM model still does not explain many of the phenomena of our physical universe
 - Neutrino masses, baryon asymmetry of the universe, dark matter
- The discovery of the Higgs boson opens a new window for us to understand the universe
 - First fundamental scalar particle (also the only one in SM) found so far
 - Looking for deviations from the SM predictions by studying its properties.....

Where do we stand ?

Higgs @ LHC

Thanks to its mass ~ 125 GeV, the Higgs physics program at LHC is very rich. All the main production and decay modes are under scrutiny by ATLAS and CMS.

Outline

- Higgs bosonic channels
 - Mass, width
 - Inclusive/differential cross sections
 - Coupling properties
- Higgs Yukawa interactions
 - Higgs to 3rd generation fermion couplings
 - Higgs to 2nd generation fermion couplings
- Combinations
- Higgs self-couplings
- BSM Higgs

See Stefania's talk

Disclaimer: only a few selected recent updates among all results from ATLAS and CMS

Higgs Boson Mass

- The only free fundamental parameter of the Higgs sector in SM
 - Completely determined the SM Higgs properties
- Measured from the mass peaks in the two high resolution channels: 4I and $\gamma\gamma$

	$m_H \pm tot (\pm stat \pm syst)$
$4\ell + \gamma\gamma$ (Run1+ 36/fb Run2)	124.97 \pm 0.24 (± 0.16 \pm 0.18) GeV
✓ 4ℓ (36/fb Run2)	125.26 \pm 0.21 (± 0.20 \pm 0.08) GeV
LHC $4\ell + \gamma\gamma$ (Run1)	$125.09 \pm 0.24 (\pm 0.21 \pm 0.11) \text{ GeV}$

- Already < 0.2% precision (~200 MeV)
 - Among the most precise EWK parameters

Higgs Boson Width

- SM prediction $\Gamma_{\rm H}$ = 4.1 MeV, crucial for BSM searches
 - direct measurement limited by detector resolutions
 - indirect measurement from off-shell production

Higgs Boson Width

Higgs Cross Sections

- Inclusive X-section measurements in $\gamma\gamma$ and ZZ channels at 7, 8 and 13 TeV
 - The ratio of BRs for the two decay channels is also measured

- In good agreement with the SM prediction
- Comparable uncertainties from statistics, experimental systematics and theory sources

Differential Cross Sections

Fiducial and differential cross sections

- Measure the rate of Higgs boson production in a certain region(s) of phase space, e.g. in different regions of Higgs boson p_T, rapidity, and N_{jets}, p_T^{jet1}, m_{jj}, Δφ_{jj}, ...
- Compare with various predictions

Differential Cross Sections -> constrain c-H coupling

Higgs differential X-section at low p_T is sensitive to Charm Yukawa coupling
 -> constrain charm-H coupling (not directly accessible)

Differential Cross Sections -> constrain Wilson Coefficients

• Use the 5 differential distributions ($p_T^{\gamma\gamma}$, N_{jets} , p_T^{jet1} , m_{jj} , $\Delta \phi_{jj}$) measured in the H-> $\gamma\gamma$ analysis to constraint Wilson Coefficients in SILH and SMEFT bases

The effect on differential distributions of the four CP-even coefficients in the SMEFT basis.

Limits are derived fitting one Wilson coefficient at a time while setting the other coefficients to zero.

Simplified Template Cross Sections

- Simplified Template Cross Sections
 (STXS). Dividing phase space into bins:
 - According to *production mode*, and kinematic distributions like number of jets, p_T(H), and m_{jj} (where applicable).
 - Designed to reduce impact of theoretical uncertainties on the results.
 - Approximately to match experimental selections so as to minimize model-dependent extrapolations.
 - Bins are merged if lack of statistics, called different "stages" of STXS.

Simplified Template Cross Sections

Cross Sections in H→WW

- With second Highest B.R. for Higgs at 125 GeV, H→WW is an important channel for measurement of Higgs boson properties
 - Cross sections measured with 36 fb⁻¹ in the $H \rightarrow WW \rightarrow |\nu|'\nu'$ channel

Higgs – Yukawa interactions

3rd-generation fermion coupling: $H \rightarrow \tau \tau$

- After observed independently with more than 5σ significance by both experiments
 - Measurements in STXS bins, results split by production mode and limits are placed on the κ_V and κ_F coupling modifiers

Mingshui Chen (IHEP Beijing)

3rd-generation fermion coupling: H→bb

- Difficult channel despite large BR (58%) due to large bkg
- VH most sensitive but ggF, VBF and ttH play a role
- Established with a significance >5σ

3rd-generation fermion coupling: H→bb

- Differential cross section measurement for VH production has sensitivity to p_T^V
- Results interpreted in EFT, limits placed on new H-W interaction coefficient c_{HW}

3rd-generation fermion coupling: ttH

- The H-top coupling can only be directly probed in the Higgs boson production.
 - **Top quark too heavy for the H \rightarrow tt decay.**
- > 5 σ observation established using the H \rightarrow bb, WW, $\tau\tau$, $\gamma\gamma$, ZZ decays.

3rd-generation fermion coupling: ttH

- With more data and improved analyses (usage of sophisticated methods for signal identification)
 - With full Run 2 luminosity, ATLAS ttH(H->γγ) has 4.9σ observed significance
 - With 2016+2017 data, CMS ttH(H->bb) obs.(exp.) significance is 3.7σ (2.6 σ) \rightarrow Evidence for ttH(H->bb) channel

PRD 99 (2019) 092005

3rd-generation fermion coupling: tH

 SM tH production XS is only ~90 fb, but it is sensitive to Higgs-top Yukawa coupling sign because of the interference

- CMS analysis combines H->bb, γγ and multi-lepton channels
- 95% C.L. upper limit on SM-like tH signal strength: 25 (12) obs.(exp.)
- ttH+tH combination favors positive κ_t over negative by ~1.5 σ (expected to favor κ_t =1.0 over κ_t =-1.0 by 4 σ)

ATLAS-CONF-2019-028

2nd-generation fermion coupling: $H \rightarrow \mu \mu$

- Challenging channel
 - Small BR(H \rightarrow $\mu\mu$) \approx 2.10⁻⁴
 - Large irreducible background
- Needs excellent muon resolution and sophisticated techniques for good categorization of events (BDTs, FSR Recovery, pile-up jet rejection, etc), and then look for peak in the m_{µµ} spectrum.
- Upper limit set on μ < 1.7 using the full Run 2 dataset
 - Observed $\mu = 0.5 \pm 0.7$.
 - Significance of the signal 0.8σ (expected 1.5σ).

2nd-generation fermion coupling: charm-H

- The BR(H→cc) is 2.9%, similar to BR(H->ττ), but way harder to probe
 - Very hard to separate the signal from the overwhelming background at a hadron collider (H->bb is background, 20 times more)
 - Charm jet ID is highly challenging
- Complementary approaches exist :
 - Direct search for H→cc decay
 - Searches for charmonium decays: $H \rightarrow J/\Psi \gamma$
 - Extract constraints on λ_c from kinematics
 - Total width / global analysis

2nd-generation fermion coupling: H→cc

- **CMS** has searched for $H \rightarrow cc$ in VH production.
 - Analysis separated according to number of leptons, and depending on whether the c-quarks are reconstructed as one or two jets.
 - Apply novel c-tagging techniques.
- Limit placed on μ < 70 (μ < 36⁺¹⁶-11 expected).

CMS-PAS-HIG-18-031

Combinations

Higgs Coupling from Combination

- **Combination of the H** \rightarrow **yy**, ZZ, WW, $\tau\tau$, bb and $\mu\mu$ channels using up to 79.8 fb⁻¹ has been used to:
 - Measure production mode cross sections.
 - Measure Higgs boson couplings.
 - Place limits on coupling scaling factors, for example on overall scaling factors for couplings to vector bosons, κ_v , and to fermions, κ_F

Higgs Coupling from Combination

- ~10% uncertainty on Higgs to W/Z boson couplings
- ~10-20% uncertainty on Higgs to the 3rd generation fermion couplings
- ~30% uncertainty on the total width constraint derived from coupling fit

Towards HL-LHC

- 2-4 % precision of Higgs couplings to W/Z, 3rd gen. fermions, γ /g and muon
- Discovery for H-> $\mu\mu$ and H->Z γ decays
- $H \rightarrow cc : \sigma/\sigma_{SM} < 6.3$ from ATLAS Run 2 result extrapolation
- $\Gamma_{\rm H}$ can be measured in CMS = 4.1^{+1.0}_{-1.1} MeV

30

15

45 80 120 200

350 600

 p_{τ}^{H} (GeV)

Summary

- The Higgs Boson is "really" new physics
 - Higgs boson is the most recent fundamental (?) particle discovered
 - It has a very special role in the SM
- Higgs measurements have entered a precision era at LHC
 - Higgs boson mass is measured with better than 0.2% accuracy
 - All main decay modes (ZZ, WW, γγ, ττ, bb) and production modes (ggF, VBF, VH, ttH) are established
 - Many differential cross sections/STXS measurements already started
- No deviations from SM have been observed
- A broad Higgs physics program is ongoing within ATLAS and CMS using the LHC Run2 dataset (<5% of the final HL-LHC integrate luminosity)
 - Stay tuned!

Thanks for your attentions

More references at

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIG

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HiggsPublicResults

Backup

Observations of 3rd generation fermion couplings

Run 2 Higgs Physics Milestones Already Reached Third Generation (Charged) Completed!

Yukawa	as at LHC	tau	b	top
ATLAS	Exp. Sig.	5.4 σ	5.5 σ	5.1 <i>σ</i>
	Obs. Sig.	6.4 σ	5.4 σ	6.3 <i>σ</i>
	mu	1.09 ± 0.35	1.01 ± 0.20	1.34 \pm 0.21 *
CMS	Exp. Sig.	5.9 σ	5.6 σ	4.2 <i>σ</i>
	Obs. Sig.	5.9 σ	5.5 σ	5.2 <i>σ</i>
	mu	1.09 \pm 0.27 *	1.04 ± 0.20	1.26 \pm 0.26 **
* 13 TeV only derived from cross section measureme				

$H \rightarrow J/\Psi J/\Psi AND H \rightarrow \Upsilon \Upsilon$

SM BRs inaccessible by many orders of magnitude.

Four-muon final state

- Experimentally clean with very small SM backgrounds
- Excess at H or Z mass would be sign of BSM physics

95% CL Upper Limits

Process	Observed	Expected
${\cal B}({ m H} ightarrow { m J}/\psi { m J}/\psi)$	$1.8 imes10^{-3}$	$(1.8^{+0.2}_{-0.1}) imes10^{-3}$
$\mathcal{B}(\mathrm{H} ightarrow \mathrm{Y}\mathrm{Y})$	$1.4 imes 10^{-3}$	$(1.4 \pm 0.1) imes 10^{-3}$
${\cal B}(Z o J/\psi J/\psi)$	$2.2 imes 10^{-6}$	$(2.8^{+1.2}_{-0.7}) imes10^{-6}$
$\mathcal{B}(Z \to YY)$	$1.5 imes 10^{-6}$	$(1.5 \pm 0.1) imes 10^{-6}$

$H \to ZZ^* \to 4\ell$

Run 2: σ×B×L = **850** events

Analysis features to note:

- low event yield: 850
- best final S/B-ratio, better than 2:1
- good mass resolution = 1-2%
- Best channel to observe Higgs at 125 GeV (due to excellent S/B ratio, despite of low yield)
- Best for Higgs mass measurement (very small systematics for muons)
- Best for studying Higgs J^P properties (fully reconstructed four-body final state)
- Best for studying Higgs width via ratio of offshell to on-shell production rates
- Second-best for measuring cross sections (after the diphoton channel)

 $H \rightarrow \gamma \gamma$

Run 2: $\sigma \times B \times L = 16K$ events

Analysis features to note:

- fairly high event yield: $20 \times (H \rightarrow ZZ^* \rightarrow 4\ell)$
- good mass resolution: 1-2%
- fair final S/B-ratio: 1:20
- Excludes J=1 (Landau-Yan theorem)
- Best for measuring cross sections
 (comb. of high yield and fair S/B ratio)
- Good for Higgs mass measurement but not the best due to systematics
- **Decay is via loop:** look for BSM contributions!

$H \rightarrow ZZ^* \rightarrow 4\ell$: Higgs mass measurement

Mass measurement:

- Three event categories: 4μ , $2e2\mu$, 4e
- Momenta of two leptons forming Z₁ are refit using *pdf*_{z1}(m_{II})
- Fit is performed for $m_{\rm H}$ in 3D space: $pdf(m_{4l}, D_{bkg}^{kin}, \sigma_{m_{4l}}|m_{\rm H})$
- With respect to using just mass distribution
 - Z₁-refit improves m_H measurement by **10%**
 - per-event four-lepton uncertainties -- by 8%
 - ME-based discriminant (signal-vs-background) -- by 3%

Run 2, 2016 result: $m_{ m H} = 125.26 \pm 0.21 = 125.26 \pm 0.20 (stat) \pm 0.08 (syst)$ GeV

This is the best Higgs boson mass measurement at the moment

Run 1	2016 dataset	H->ZZ->4I	Η->γγ	Combination
ATLAS+CMS ZZ+ $\gamma\gamma$ combination	ATLAS	124.79 ± 0.37	124.93 ± 0.40	124.97 ± 0.24
125.09 ± 0.24 GeV	СМЅ	$\textbf{125.26} \pm \textbf{0.21}$	125.4 ± 0.3	

Awaiting updates with full Run 2 dataset (stat errors are expected to improve by a factor of 2: \pm 0.10)

HL-LHC: stat error will improve by a factor of 10: ~20 MeV One needs to improve systematics proportionally to about 10 MeV, or 0.01% – huge challenge!

$H \rightarrow ZZ$: Γ_{H} from off-shell to on-shell production

F(m) depends on:

- <u>huge boost</u> for $m_{H^*} > 2m_Z$ (both Z bosons are now on-shell)
- Hgg coupling g_g^2 evolution (notice the bump for $m_{H^*} > 2m_t$)
- partonic gg-luminosity drives F(m) down
- tensor structure Hgg coupling (non-SM couplings tend to give a large boost to off-shell production)

Assumptions:

- The coupling modifiers are identical for onshell and off-shell production;
- The coupling modifiers are independent of the momentum transfer of the Higgs boson production mechanism considered in the analysis;
- Any new physics which modifies the off-shell signal strength and the off-shell couplings does not modify the relative phase of the interfering signal and background processes;
- There are no sizable modifications to the offshell signal region unrelated to an enhanced off-shell signal strength

Simplified Template Cross Sections

- To measure as precisely as possible individual production processes (ggF, VBF, VH and ttH) in different regions of phase space
 - Integrate over the decay products of the Higgs.
 - Define fiducial cuts at truth particle level on the Higgs production (eta, pT, number and kinematics of the additional jets or leptons in the events).
 - Define (as much as possible) reconstruction level cuts corresponding to the fiducial volume of interest (as much as possible).
- Fit the defined partially fiducial defined cross sections in all regions simultaneously.

Advantage possibility to combine decay channels and use multivariate techniques in specific channels -- Compromise as both aspects increase the extrapolation.

JHEP 05 (2019) 141

Interpretation in EFT with STXS

Interpretation of ATLAS VH(bb) STXSs in an EFT framework, in this case the high energy parametrization is important

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \sum_{i} c_{i}^{(6)} \mathcal{O}_{i}^{(6)} + \sum_{j} c_{j}^{(8)} \mathcal{O}_{j}^{(8)} + \cdots$$

- Reduction of the (2499 baryon number preserving dim-6 Wilson coefficients) keeping only universal and CP- invariant operators reduces to 8 Higgs production operators and 9 operators affecting EW observables.
- **SILH**: Strongly interacting light Higgs basis, with universal couplings in which new physics couples only to the Higgs captures best the low energy effects.
 - $O_{HW} = i \left(D^{\mu} H \right)^{\dagger} \sigma^a \left(D^{\nu} H \right) W^a_{\mu\nu},$
 - $O_{HB} = i \left(D^{\mu} H \right)^{\dagger} \left(D^{\nu} H \right) B_{\mu\nu},$
 - $O_W = \frac{i}{2} \left(H^{\dagger} \sigma^a \overrightarrow{D^{\mu}} H \right) D^{\nu} W^a_{\mu\nu},$
 - $O_B = \frac{i}{2} \left(H^{\dagger} D^{\leftrightarrow} H \right) \partial^{\nu} B_{\mu\nu}.$

Linear terms for SM-BSM interference and quadratic terms taken into account.

Higgs Measurements, PIC2019

40

Combination of all Higgs boson analyses

	gg->H	VBF	VH	ttH
WW				
ZZ				
bb				
ττ				
γγ				
μμ				
invisible				

$$\sigma(xx \to H) \cdot BR(H \to yy) \propto \frac{\Gamma_{xx} \cdot \Gamma_{yy}}{\Gamma_{TOT}}$$

One needs **11 independent parameters** to describe all currently relevant production & decay mechanisms:

 Γgg (loop induced: t and some b)

 Γww

 Γzz

 Γtt

 Γbb

 Γττ

 Γψγ (loop induced: W and t)

 Γμμ

 Γinvisible

 Γ

 Γ

 Γ

 Γ

 Γ

 Γ

 Γ

 Γ

 Γ

 Γ

 Γ

 Γ

 Γ

 Γ

 Γ

 Γ

 Γ

 Γ

 Γ

 $Γ_{TOT}$ = (sum of all Γ listed above) + (sum of all other SM Γ) + $Γ_{BSM}$

decay modes not studied or, perhaps, studied, but not included in combination

- Inclusive Higgs signal strength from combination of all analysis channels:
 - **ATLAS Run 2 (80 fb⁻¹):** $\mu = 1.11^{+0.09}_{-0.08} = 1.11 \pm 0.05 \text{ (stat.)} ^{+0.05}_{-0.04} \text{ (exp.)} ^{+0.05}_{-0.04} \text{ (sig. th.)} \pm 0.03 \text{ (bkg. th.)}$
 - **CMS Run 2 (36 fb⁻¹):** $\mu = 1.17 \pm 0.10 = 1.17 \pm 0.06 \text{ (stat)} ^{+0.06}_{-0.05} \text{ (sig theo)} \pm 0.06 \text{ (other syst)}$

Comparable uncertainties from statistics, experimental systematics and theory sources

Towards HL-LHC

 $\sqrt{s} = 14 \text{ TeV}$, 3000 fb⁻¹ per experiment Total ATLAS and CMS Statistical ATLAS - CMS Run 1 **ATLAS HL-LHC** Projection **HL-LHC** Experimental combination Run 2 Uncertainty [%] Theory Tot Stat Exp Th κ., κ_{\sim} 13% **1.8** 0.8 1.0 1.3 9% 1.8% κ_W 8.6% 1.7% κ_W **1.7** 0.8 0.7 1.3 11% κ_Z κ_z 7.2% 1.5% 11% **1.5** 0.7 0.6 1.2 κ_q κ_q 14% 2.5% 11% **2.5** 0.9 0.8 2.1 14% 3.4% κ_t 30% K_t **3.4** 0.9 1.1 3.1 κ_b 26% 18% 3.7% $\kappa_{\rm b}$ **3.7** 1.3 1.3 3.2 κ_{τ} 14% 1.9% 15% Kτ **1.9** 0.9 0.8 1.5 κ_u 4.3 3.8 1.0 1.7 **JHEP 08 HL-LHC YR** ATLAS-CONF-2019-04 $\kappa_{Z\gamma}$ (2016) 045 1902.00134 9.8 7.2 1.7 6.4 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0

"YR18 systematic uncertainties" scenario (S2): Theoretical uncertainties are scaled down by a factor of two, while experimental systematic uncertainties are scaled down with the square root of the integrated luminosity until they reach a defined minimum value based on estimates of the achievable accuracy with the upgraded detector

Expected uncertainty

Statistics

Workhorse of the combination is the profile likelihood ratio, Λ

Exploit the asymptotic limit:

- Test statistics $q(\vec{\alpha}) = -2 \ln (\Lambda(\vec{\alpha}))$ is assumed to follow a χ^2 distribution with $\vec{\alpha}$ degrees of freedom
- To determine a confidence-level (CL) interval for a single parameter α , we only need to find the values of α where $q(\alpha) = \text{the } \chi^2$ critical value for that CL, e.g. 1D 68% CL at $q(\alpha) = 1.00$

An example of breaking down of uncertainties

- For this, and other key measurements, break uncertainty down into 4 components:
 - statistical, experimental, background theory, signal theory
- All ~4300 NPs assigned to one of these groups
- Each component determined by fixing successive group of NPs to best-fit values θ̂ and repeating NLL scan

Higgs rates & couplings

Signal parameterization

Couplings, **k** Parameters scale cross sections and partial widths relative to SM $\kappa_j^2 = \sigma_j / \sigma_j^{\mathrm{SM}} \quad \kappa_j^2 = \Gamma_j / \Gamma_j^{\mathrm{SM}}$ $\sigma_i \cdot \mathbf{BR}^f = \frac{\sigma_i \cdot \Gamma_f}{\Gamma_{ii}},$ **Total width determined as** $\Gamma_{\rm H} = \frac{\kappa_H^2 \cdot \Gamma_H^{\rm SM}}{1 - {\rm BR}_{\rm DSM}}$ Where $\kappa_H^2 = \sum_i \mathrm{BR}_{\mathrm{SM}}^j \kappa_j^2$

Higgs production processes

Usual suspects:

• Rare processes:

