

Semileptonic and Leptonic *B* decays PIC 2019 TAIPEI

PETER M. LEWIS | BONN

SEMILEPTONIC B DECAYS

A **CKM** probe: V_{cb} and V_{ub}

Theory: exclusive decays

- Tree-level diagram has **non-perturbative QCD muck**
- Parameterize in terms of the momentum transfer squared $q^2 = (p_\ell + p_\nu)^2$:

 $\frac{d\Gamma}{dq^2} \propto |V_{xb}|^2 |f(q^2)|^2$

- Form factors tied to light cone sum rules (low *q*²) or lattice calculations (high *q*²)
- (three additional angular parameters needed in decays to vector mesons like *ρ*, *D**)

CLN, 1998 <u>arXiv:9712417</u> BGL, 1997

arXiv:950821

Semileptonic **B** decays

Theory: form factor parameterization

- (as an example: exclusive $B \rightarrow D^* l v$)
- Form factor *F*: terms for **three helicity amplitudes**
- **CLN**: (Caprini, Lellouch, Neubert)
 - **HQET** input to reduce number of free parameters to 3; extract from experiment
- **BGL**: (Boyd, Grinstein, Lebed)
 - Expand each FF in the most generic form, with minimal assumptions, in a power series
- **CLN** was standard for 20 years, but **BGL** is gaining favor due to **model-independent approach**
 - Some implications for validity of HQET

 $\frac{d\Gamma(B \to D^{*-}\ell^+\nu)}{dw \ d\cos\theta_\ell \ d\cos\theta_\nu \ d\chi} = \frac{G_F^2 \left|V_{cb}\right|^2}{48\pi^3} F(w,\cos\theta_\ell,\cos\theta_\nu,\chi)G(w)$

An interesting puzzle

- Tension in V_{cb} and V_{ub} between *inclusive* vs. *exclusive* reconstructions
- (exclusive results here use **CLN**)

An interesting puzzle: *a solution?*

- Two 2017 re-parameterizations of Belle's extraction of $|V_{ch}|$ in $B \rightarrow D^* l \nu$:
 - **CLN** consistent with HFLAV exclusive 0 average

action.

- **BGL** more consistent with inclusive 0
- Is exclusive/inclusive tension entirely a result of form factor parameterization?
- New developments to be discussed!

Belle tagged $B \rightarrow D^* l v$, 2017 arxiv:1702.01521 While our findings do not provide a clear resolution of the $|V_{cb}|$ puzzle, they strongly question the reliability of the current $B \to D^* \ell \nu$ averages [3] and call for a reanal-Reparameterizations, 2017 ysis of old experimental data before Belle-II comes into arxiv:1703.06124 arxiv:1703.08170 $|V_{ub}| [10^{-3}]$ Inclusive $\rightarrow D^* 1 \nu$ |V_{ub}|: GGOU $B \rightarrow D 1 \nu$ |V_{cb}|: global fit in KS $B \rightarrow \pi 1 \nu$ $\Lambda_{\rm h} \rightarrow p \,\mu \,\nu$ Average 68% C.L. Average $\Delta \chi^2 = 1$ 3.5 HFLAV Spring 2019 $P(\chi^2) = 7.79$ 2.5 36 38 40 42 34 $|V_{cb}| [10^{-3}]$ **CLN BGL**

Another interesting puzzle

- Signs of lepton universality violation? $R(D^{(*)}) = \frac{\mathcal{B}(B \to D^{(*)}\tau\nu)}{\mathcal{B}(B \to D^{(*)}l\nu)}$
 - (ratio removes dependence on V_{cb} and cancels some theoretical+experimental uncertainties)

Another interesting puzzle: $R(D^{(*)})$

• $R(D^{(*)})$ Sensitive to NP (for example, **charged Higgs**):

$$\mathcal{H}_{\text{eff}} = \frac{G_F}{\sqrt{2}} V_{cb} \left\{ [\bar{c}\gamma^{\mu}(1-\gamma_5)b][\bar{\tau}\gamma_{\mu}(1-\gamma_5)\nu_{\tau}] \right\}$$
$$\stackrel{\bullet}{=} \frac{m_b m_{\tau}}{m_B^2} \bar{c}[g_S + g_P\gamma_5]b[\bar{\tau}(1-\gamma_5)\nu_{\tau}] \right\} + h.c.$$

- Could be sensitive to **leptoquark** models too (additional tensor operator)
- New developments to be discussed!

LEPTONIC B DECAYS

Leptonic **B** decays

A **CKM** probe: V_{ub}

Leptonic **B** decays

Theory (exclusive)

- Decay rate (leading-order):
 - Theoretically very clean; precise SM prediction
 - $\circ ~~ \Gamma(B \rightarrow \ell \nu) \propto f_B^2 |V_{ub}|^2 x^2 (1-x)^2$
 - **Decay constant** \overline{f}_{B} from QCD sum rules or lattice calculations
 - $\circ~$ Helicity suppression factor ($x=m_\ell/m_B$) favors tau mode

Leptonic **B** decays

Theory: NP potential

• Sensitive to NP (for example, **charged Higgs**):

$$\mathcal{H}_{\text{eff}} = \frac{G_F}{\sqrt{2}} V_{ub} \left\{ \frac{[\bar{u}\gamma^{\mu}(1-\gamma_5)b][\bar{l}\gamma_{\mu}(1-\gamma_5)\nu_l]}{-\tan^2\beta \frac{m_b m_l}{m_H^2} [\bar{u}(1+\gamma_5)b][\bar{l}(1-\gamma_5)\nu_l]} \right\} + h.c. \quad B^+ \left\{ b \\ u \\ u \\ v_{\mu} \\ v_$$

• Lepton flavor-independent BF enhancement:

$$\mathcal{B}(B^- \to l^- \bar{\nu}) = \mathcal{B}_{\rm SM} \left[1 - \tan^2 \beta \frac{m_B^2}{m_H^2} \right]^2$$

- Could be sensitive to **leptoquark** models and/or reveal **sterile neutrinos**
- New developments to be discussed!

MEASUREMENT

High luminosity, **low** cross-section, low background, high efficiency

- Experiments
 - Babar (1999-2008): 471 million *BB* (424 fb⁻¹)
 - Belle (1999-2010): 771 million *BB* (711 fb⁻¹)
 - Belle II (2019-): target **50 ab**⁻¹

See **Shuji Tanaka**'s talk tomorrow for Belle II status

High luminosity, **low** cross-section, low background, high efficiency

- The essentials
 - Electron/positron collision at $\Upsilon(4S)$ [or higher] *bb* resonance (10.58 GeV)
 - Decays ~100% of time to ~at-rest *BB* pairs
 - Kinematics completely known
 - \circ ~4 π detector coverage
 - Efficient reconstruction of neutrals
 - Very clean environment

Tagging

- Full (hadronic) tagging
 - Reconstruct B_{tag} in one of >10,000 hadronic modes
 - p_{tag} now known; thus p_{sig} is too
 - $\circ p_v$ now recoverable
 - Tight kinematic constraints now possible; very pure signal selection
 - Downside: tagging efficiency ~0.1%
- Semileptonic tagging
 - \circ Higher tagging efficiency (~1%)
 - Weaker kinematic constraints (B_{tag} not fully recovered)

	$B_{\rm sig}$
e^{-}	h
	B
B Y(4	4S)
	e
$B_{\rm tag}$	

LHCb

Low luminosity, high cross-section

- The essentials
 - \circ Proton/anti-proton collision at ~10*T*eV
 - \circ To date: 9 fb⁻¹
 - Forward coverage only; **large boost**
 - Excellent vertexting (~cm displacement)
 - Access to *strange* B mesons/baryons
- A generalization:
 - *B*-factories best for final states with neutrals or missing energy (*e.g.* $B^+ \rightarrow \pi^0 l^+ \nu$)
 - LHCb best for charged final states (*e.g.* $B^0_{s} \rightarrow \mu \mu$)
 - Competitive and complementary

See **Mark Smith**'s talk tomorrow for recent LHCb results

RECENT DEVELOPMENTS

Using *semileptonic* tagging

• (posted to arXiv Apr. 2019)

Using *semileptonic* tagging

- (posted to arXiv Apr. 2019)
- First R(D) measurement using SL tag
- Improvements vs. older analysis
 - $R(D^*)$ only → R(D) and $R(D^*)$ simultaneously
 - $\circ \quad \text{ For } R(D^*), B^0 \text{ only} \rightarrow B^{\pm}, B^0$
 - Improved tagging algorithm ("Full Event Interpretation" from Belle II, <u>arXiv:1807.08680</u>)

Using *semileptonic* tagging

- Simultaneous extraction of all $B \rightarrow D^{(*)} l/\tau v$
 - Use $B \rightarrow D^{(*)} lv$ as "normalization" mode 0
- Extraction: 2D fit to:
 - **E**_{FCI}: *extra energy* in calorimeter (not Ο associated with tag or signal, right)
 - Signal **class**ifier from a BDT trained on Ο signal against normalization mode

Classifier (signal vs. normalization)

E_{FCI}: Extra energy in calorimeter

Belle SL-tagged R(D^(*)), 2019 <u>arXiv:1904.08794</u>

Belle: update to R(D) and R(D*)

Using *semileptonic* tagging

• Fit projections, right, for *D*⁰*l* samples

Preliminary findings

- Most-precise R(D)/R(D*) measurement to date
 - (final word from Belle?)
- Compatible with SM at 1.2σ
 - (possibly decreasing before publication)
- Belle II results eagerly awaited

BELL.

Belle: D^* polarization in $B^0 \rightarrow D^{*-} \tau^+ \nu_{\tau}$

A new angle on $R(D^*)$

• (preliminary)

BEL

Belle: D^* polarization in $B^0 \rightarrow D^{*-} \tau^+ \nu_{\tau}$

A new angle on $R(D^*)$

- (preliminary)
- Probe of **NP** signature in angular distributions
- Target the fraction of D^* longitudinal polarization, $F_L^{D^*}$

 $\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta_{\rm hel}} = \frac{3}{4} (2F_L^{D^*}\cos^2\theta_{\rm hel} + (1 - F_L^{D^*})\sin^2\theta_{\rm hel})$

Belle: D^* polarization in $B^0 \rightarrow D^{*-} \tau^+ \nu_{\tau}$

Analysis/results

- Inclusive tag
- In each of three cosθ_{hel} bins, yield comes from fit to **tag** kinematic distributions
- Result agrees with SM within 1.6 σ : $F_L^{D^*} = 0.60 \pm 0.08(\text{stat}) \pm 0.04(\text{syst})$

BaBar: tagged $B \rightarrow D^* lv$

New analysis probing HQET

BaBar: tagged $B \rightarrow D^* l v$

New analysis probing HQET

- Hadronic-tagged full angular analysis
- Unbinned 4D fit to the 4 kinematic parameters
- A clean probe to HQET assumptions that differentiate **CLN** and **BGL**
- Tight kinematic constraints lead to ultra-pure sample, *right*

BaBar: tagged $B \rightarrow D^* lv$

Results

- Form factor shapes with BGL
 - Comparison with world-average CLN
 - Slightly better agreement with zero-recoil ($q^2=0$) LCSR
 - Significant tension in extrapolations to higher q^2
 - BGL is in tension with HQET

BaBar: tagged $B \rightarrow D^* lv$

Results

- Updated V_{cb} with **BGL**
 - Consistent with CLN world average
 - Parameterization with BGL does not appear to solve the inclusive/exclusive tension

Belle untagged $B \rightarrow D^* lv$, 2019 <u>arxiv:1809.03290</u>

Belle: untagged $B \rightarrow D^* l v$

New analysis comparing CLN and BGL

Belle: untagged $B \rightarrow D^* l v$

New analysis comparing CLN and BGL

- Highest-precision |Vcb| determination yet
 - Systematics improvements over prior Belle result
- First direct measurement using BGL

BELL

Belle untagged $B \rightarrow D^* lv$, 2019 <u>arxiv:1809.03290</u>

Belle: untagged $B \rightarrow D^* l v$

Quick summary

• The inclusive/exclusive question is **unresolved**

See **Eiasha Waheed**'s talk tomorrow for the details!

Belle: update to $B^- \rightarrow \mu^- \nu$

Preliminary update to Belle 2018 PRL

Belle B⁻ $\rightarrow \mu^{-}\nu$, 2018 PRL:121.031801 arxiv:1906.06871 BEL Data 800 Entries/[50 (MeV/c)] B→µv $\square B \rightarrow \pi I v$ 600 $\square B \rightarrow \rho | v$ BB qq+QED $B \rightarrow \mu v \times 10$ 200 2.8 2.5 2.6 2.7 2.9 2.4 3 3.1 p_{μ}^* (GeV/c) Preliminary 15 Continuum Entries / (0.050 GeV) $b \rightarrow c$ Rare $B \rightarrow \mu \nu \gamma$ 100 b→u Signal /////, sys. unc. 50 Data 2.2 2.4 2.6 2.8 3.0 3.2

 p_{μ}^{B} / (GeV)

Belle: update to $B^- \rightarrow \mu^- \nu$

Preliminary update to Belle 2018 PRL

- 2018 result (*top*):
 - Untagged
 - Hunt for bump in p_{μ}
 - World's best BF (2.4 σ significance)
- 2019 extension (**preliminary**; Moriond EW, *bottom*):
 - Inclusive tagging
 - Systematics improvements
 - Investigate type-II and -III 2HDM
 - Sterile neutrino scan

Belle: update to $B^- \rightarrow \mu^- \nu$

Preliminary update to Belle 2018 PRL

- Preliminary results:
 - Improved significance: **2.8***\sigma*

300

250

200

100

50

0

ang 120

- Sterile neutrino scan
- 2HDM limits

Prospects

What can we expect in the future?

Summary

Mysteries still mysterious

- Inclusive/exclusive tension in V_{ub}/V_{cb}
 - Form factor dependence (probably) won't save us
 - \circ Tension still at ~3 σ
- Excess in R(D^(*))
 - World average tension with SM still at $\sim 3\sigma$, but decreasing
- Semileptonic and leptonic B decays remain **excellent probes** of SM and BSM physics
- Eagerly awaiting Belle II and upgraded LHCb results!

THANK YOU!

ADDITIONAL SLIDES

Kinematics

- We know the beam energy $(m_{Y(4S)})$
- Define two ~independent kinematic quantities
 - $\circ \qquad \Delta E = E_B^{\star} E_{\text{beam}}^{\star} \quad (\sim 0 \text{ for true } B)$

$$\circ \qquad m_{\rm bc} = \sqrt{E_{\rm beam}^{\star 2} - \boldsymbol{p}_B^{\star 2}} \ (\sim m_B \text{ for true } B)$$

- *Kinematic consistency* of reconstructed *B* with *B* meson
- For single-neutrino decays, define Y as the visible mass in the decay. Then this quantity should be in [-1, 1]

$$\circ \qquad \cos\theta_{BY} = \frac{2E_B E_Y - m_B^2 - m_Y^2}{2p_B p_Y}$$

