Precision Test of Standard Model from High Energy Colliders

Physics in Collision 2019 Taipei (Taiwan) September 16th – 20th 2019

Introduction

Lord Kelvin at British Association for the Advancement of Science in 1900:

"There is nothing new to be discovered in physics now. All that remains is more and more precise measurements."

(actually Kelvin never pronounced this sentence. Something similar was said by Michelson six years earlier)

Let's follow the road pointed by "Kelvin/Michelson" in the hope to be wrong as well

What kind of precise measurements?

The Standard Model in a nutshell (actually in a <u>coffee mug</u>)

Standard Model Predictions

The SM needs three input variables to derive all other quantities. The most precise: α_{em} ;

C.Luci - Precision Test of the SM

 $G_{r};$

 m_{π}

What about LHC?

- With the measurement of M_H the electroweak sector of the SM is overconstrained
- Global fits can be exploited to predict W boson mass and the effective electroweak mixing angle, with a precision **exceeding** that of the direct measurements.
- It is a challenge for the experiments to be (at least) as good as the fit

- W mass
 - ATLAS (2018): <u>Eur. Phys. J. C 78: 110</u>
- $sin^2\theta_{eff}$
 - CMS (2018): <u>Eur. Phys. J. C 78: 701</u>; ATLAS (2018): <u>ATLAS-CONF-2018-037</u>

----- Vector Bosons Couplings ------

- Vector Boson Scattering
 - Same Sign WW:
 CMS (2018) <u>Phys Rev Lett. 120.081801</u>; ATLAS (2019) <u>arxiv:1906.03203</u>
 - WZ:
 CMS (2019) Phys.Lett. B 795 281-307; ATLAS (2019) Physics Letters B 793 469–492
 - ZZ: ATLAS (2019) <u>ATLAS-CONF-2019-033</u>
- Triboson final state
 - WWW: CMS (2019) <u>Phys Rev D 100 012004</u>
 - WWW, WVZ: ATLAS (2019) <u>arxiv:1903.10415</u>

C.Luci - Precision Test of the SM

17/09/19

Page 7

ATLAS W mass: measurement strategy

Eur. Phys. J. C 78: 110

Due to the neutrino the W invariant mass can not be reconstructed and we are forced to consider other variables sensitive to the W mass, like for instance:

• The lepton transerve momentum: \vec{p}_{T}^{ℓ}

• The W transvers mass: $m_T^W \equiv \sqrt{2\vec{p}_T^\ell \vec{p}_T^{miss}} \left(1 - \cos \Delta \phi\right)$ where $\vec{p}_T^{miss} = -\left(\vec{p}_T^\ell + \vec{u}_T\right)$ is the neutrino missing p_T and u_T is the **recoil**: $\vec{u}_T = \sum_i \vec{E}_{T,i}$ (calorimeter clusters)

Event sample	
$ \begin{array}{ccc} W^+ \to \mu^+ \nu & 4 \ 609 \ 818 \\ W^- \to \mu^- \bar{\nu} & 3 \ 234 \ 960 \end{array} $	-
$ \begin{array}{ccc} W^+ \to e^+ \nu & 3 \ 397 \ 716 \\ W^- \to e^- \bar{\nu} & 2 \ 487 \ 525 \end{array} $	_

Sample of 13.7 M events: 5 times larger than combined (D0 + CDF) Tevatron sample

Statistics is not an issue; the challenge is the control of systematics (theoretical and experimental) to aim at 10 MeV error

 $Z \rightarrow I^+I^-$ is valuable to controll the systematics (MC tuning and cross checks)

W mass: effects of p_T^W, PDF and pile up

• At Leading Order the W is emitted along the beam pipe:

$$\vec{p}_T^W = 0$$

• HO corrections modify the spectrum:

 $\vec{p}_T^W \neq \mathbf{0}$

Example taken from an ATLAS note (2008) <u>arxiv:0901.0512</u>

W Mass Fits

- Fit from MC templates with different mass generated in steps of 1 10 MeV
- 28 χ² fits, separeted for lepton type (μ,e), W charge (+/-), rapidity interval (4 for μ, 3 for e) and fit variable (m_T, p_T).
- Many other fits were performed as consistency checks by varying fit range, etc ...

Comparison with previous results and SM

The ATLAS measurement has the same precision of the previous most precise single measurement (CDF) and is consistent with previous results.

INFN

Prospects for M_W measurements

Major source of uncertainties are p_T^W (from QCD and PDF) and recoil (from pile-up)

exploit dedicated low pile up runs ($<\mu>\simeq 2$) to get p_T^W from data

ATLAS: ATL-PHYS-PUB-2017-021

Low-mu datasets: ATLAS/CMS 380/200 pb⁻¹ at 13 TeV; 260/300 pb⁻¹ 5 TeV

ATLAS-CMS High_Lumi perspective arxiv:1902.10229

- Total uncertainty of ~11 MeV with 200 pb-1 of data at each energy (~one week of data taking)
- With HL-LHC PDF and 1 fb⁻¹ we could reach of precision of **6 MeV**
- With Future LHeC PDF set from DIS data we could aim at a precision of 4 MeV

CAVEAT: experimental systematics are not included, but they are of statistical nature and could be reduced

C.Luci - Precision Test of the SM

sin²0_{eff}

C.Luci - Precision Test of the SM

17/09/19

Page 13

PROBLEM: how do we distinguish a quark from an antiquark in the initial state?

a) The antiquark is picked up from the sea; b) at high rapidity is more likely that the Z follows the quark direction.

PDF effects on the A_{FB} measurement

- A_{FB} is sensitive to PDF for two reasons:
 - different couplings of u- and d-type quarks
 - y_{II} direction depends on the relative content of valence and sea quarks

$$= T_3^f - 2Q_f \sin^2 \theta_W$$

= T_3^f
$$A_{FB} = \frac{\sigma(\cos \theta * > 0) - \sigma(\cos \theta * < 0)}{\sigma(\cos \theta * > 0) + \sigma(\cos \theta * < 0)}$$

PDF uncertainty is the major source of systematic error and require particular care in the sin² θ_{W} extraction

CMS: A_{FB} methodology Eur. Phys. J. C 78: 701

- Measure A_{FB} asymmetry in Collin-Soper frame in reconstructed m_{II}, y_{II} bins
- Sin²θ_{eff} extracted from template fit to A_{FB} in data using theoretical predictions (Powheg v2 event generator using NNPDF3.0 PDFs)

CMS: uncertainties and result

				Experimental systematic un	centainties	
	Channel	Statistical uncertainty	<u> </u>	Source	Muons	Electrons
	Muons	0.00044		Size of MC event sample	0.00015	0.00033
	Flectrons	0.00060		Lepton selection efficiency	0.00005	0.00004
	Liccuons	0.00000		Lepton momentum calibration	0.00008	0.00019
	Combined	0.00036		Background subtraction	0.00003	0.00005
				Modeling of plieup	0.00003	0.00002
	systematic u	ncertainties from PDF		Total	0.00018	0.00039
Chan	nel Not cons	training PDFs Constraining PDF	s	systematic uncertaint	ies from the	ory
Muoi Elect	ns 0.2312	5 ± 0.00054 0.23125 ± 0.00032		Modeling parameter	Muor	ns Electrons
Elect	ions 0.2303			Dilepton $p_{\rm T}$ reweighting	0.000	03 0.00003
Com	bined 0.2310	2 ± 0.00057 0.23101 ± 0.00030)	$\mu_{ m R}$ and $\mu_{ m F}$ scales	0.000	11 0.00013
CMS	Weighted PDF	18.8 fb ⁻¹ (8 1	ēV)	POWHEG MINLO Z+j vs. Z at l	NLO 0.000	0.00009
CT10		• • • • • • • • • • • •	<u> </u>	FSR model (PHOTOS <i>vs.</i> PYTHIA	A 8) 0.000	J3 0.00005
NNPE	DF3.0 (1000)	↓		Underlying event	0.000	0.00004
MMH.	T2014	● i		Electroweak $\sin^2 \theta_{\text{eff}}^{\ell} vs. \sin^2 \theta_{\text{eff}}^{\mu}$	f = 0.0000	0.00001
CT14		•		Total	0.000	15 0.00017
NNPE	DF3.0 (100)					
.229	0.23	$\sin^2 \theta_{eff}^l$				

 $\sin^2 heta_{
m eff}^\ell = 0.23101 \pm 0.00036 \, (
m stat) \pm 0.00018 \, (
m syst) \pm 0.00016 \, (
m theo) \pm 0.00031 \, (
m PDF)$

 $\sin^2 \theta_{\rm eff}^{\ell} = 0.23101 \pm 0.00053$

2.3 % precision

STORE OF STORE

ATLAS: A_i methodology ATLAS-CONF-2018-037

The differential cross section $pp \rightarrow Z \rightarrow \ell \ell$ can be parametrized at EW LO and all order QCD as:

Parity-violating A₄ term is sensitive to sin²θ_{eff}

ATLAS: data sample

ATLAS can exploit also the Forward Region for the electron channel, unlike CMS

ATLAS: uncertainties and result

Channel	eecc	$\mu\mu_{CC}$	ee _{CF}	$ee_{CC} + \mu\mu_{CC}$	$ee_{CC} + \mu\mu_{CC} + ee_{CF}$	
Central value	0.23148	0.23123	0.23166	0.23119	0.23140	
	Uncertainties					
Total	68	59	43	49	36	
Stat.	48	40	29	31	21	
Syst.	48	44	32	38	29	
	Uncertainties in measurements					
PDF (meas.)	8	9	7	6	4	
$p_{\rm T}^Z$ modelling	0	0	7	0	5	
Lepton scale	4	4	4	4	3	
Lepton resolution	6	1	2	2	1	
Lepton efficiency	11	3	3	2	4 ~ 9	
Electron charge misidentification	2	0	1	1	< 1	
Muon sagitta bias	0	5	0	1	2	
Background	1	2	1	1	2	
MC. stat.	25	22	18	16	(12)	
	Uncertainties in predictions					
PDF (predictions)	37	35	22	33	24	
QCD scales	6	8	9	5		
EW corrections	3	3	3	3	3	

 $\sin^2 \theta_{\text{eff}}^{\ell} = 0.23140 \pm 0.00021 \text{ (stat.)} \pm 0.00024 \text{ (PDF)} \pm 0.00016 \text{ (syst.)}$

C.Luci - Precision Test of the SM

Sin²θ_{eff} : comparison among results

The measurement is still dominated by the "old" LEP and SLD done at the Z-pole

C.Luci - Precision Test of the SM

17/09/19

INFN

$sin^2\theta_{eff}$: what next?

- ATLAS and CMS measurements can not be combined as they are because they use different analysis methods (the LHC electroweak working group will take care of it)
- They plan to use the same approach (most likely Ai coefficients) for future measurements (Run2 onwards). LHCb will also play an important role (see next slide).
- A common note describes what could be obtained in HL-LHC (arxiv:1902.10229).

Prospects for Sin²θ_{eff} at LHCb

LHCb is designed for flavour physics but it is also able to act as general purpose forward detector

Gauge Boson Couplings

C.Luci - Precision Test of the SM

17/09/19

Page 24

Motivations for the measurement

 The non-Abelian gauge nature of the Standard Model predicts, in addition to the trilinear WWZ and WWγ couplings (TGV), also Quartic Gauge Boson Couplings (QGC)

- TGC and QGC probe different aspects of the weak interactions <u>cds:9505252</u>
- TGC test the non-Abelian gauge structure of the Model; they have been tested at LEP:

- QGC are accessible to LHC. They can be regarded as a window on the electroweak symmetry breaking mechanism and they represent a connection to the scalar sector of the theory.
- Anomalous couplings are handled by the Effective Field Theory approach:

Production cross sections

Vector Boson Scattering (VBS)

C.Luci - Precision Test of the SM

17/09/19

Page 27

VBS: Feynman diagrams

INFN

Final state: 2 Vector Bosons + 2 jets

VBS: Same Sign WW

C.Luci - Precision Test of the SM

17/09/19

Page 29

Phenomenology highlights for VBS W[±]W[±]jj

- □ Two hadronics jets in forward and backward regions with high energy (tagging jets)
- Hadronics activity suppressed between the two jets (rapidity gap) due to absence of colour flow between interacting partons
- Boson pair more central than in non-EWK processed

The VBS process involving two same-sign W bosons has the largest signal-to-background ratio of all the VBS processes at LHC.

Di-jet invariant mass: arxiv:1803.07943

CMS: VBS Same Sign WW Phys Rev Lett. 120.081801

- Significance: 5.5 σ (obs); 5.7 σ (exp.) \rightarrow first observation of EWK W[±] W[±]jj
- $\sigma_{fid}(W^{\pm} W^{\pm}jj) = 3.83 \pm 0.66 \text{ (stat)} \pm 0.35 \text{ (syst) fb}$ (statistically dominated)

•
$$\sigma^{LO} = 4.25 \pm 0.27$$
 (scale + PDF) fb

CMS VBS WW: aQGC & limits on H^{±±}

handled by \rightarrow $\mathcal{L}_{EFT} = \mathcal{L}_{SM} + \left| \sum_{i} \frac{c_{i}}{\Lambda^{2}} O_{i} \right| + \left| \sum_{j} \frac{f_{j}}{\Lambda^{4}} O_{j} \right| + \cdots$ dim-6 dim-8

-0.89, 1.02

 f_{T2}/Λ^4

They are all compatible with 0 (SM)

[-0.80, 0.95]

C.Luci - Precision Test of the SM

Events / 100 GeV

ATLAS: VBS Same Sign WW arxiv:1906.03203 Combined WΖ 2016 data: 36.1 fb⁻¹ at 13 TeV 30 + 4 Non-prompt 15 + 5 e/γ conversions 13.9 ± 2.9 2 same sign leptons (e or µ) with: Other prompt 2.4 ± 0.5 $p_T > 27$ GeV and n < 2.5 $W^{\pm}W^{\pm}ii$ strong 7.2 ± 2.3 M_{ii} > 500 GeV; |Δn_{ii} > 2.0 Expected background 69 ± 7 $W^{\pm}W^{\pm}jj$ electroweak 60 ± 11 ATLAS Data 25 W[±]W[±]ii electroweak Data 122 √s = 13 TeV, 36.1 fb⁻¹ W[±]W[±]jj strong Non-prompt e/γ conversions Comparison with MC predictions 20 W7 σ^{fid.} [fb] Other prompt ATLAS Total experimental uncertainties Total uncertainty $\sqrt{s} = 13 \text{ TeV}$. 36.1 fb⁻¹ 15 Experimental stat. uncertainties 4 Total theoretical uncertainties Theoretical scale uncertainties 10 3 5 500 2500 3000 1000 1500 2000 2 m, [GeV] Sherpa v2.2: non-optimal setting of colour flow for the parton shower Interference with strong production and NLO EW corrections are not included in theoretical predictions \rightarrow excess of central emissions Sherpa v2.2.2 Powheg+Pythia8 Data $\sigma^{\text{fid.}} = 2.89^{+0.51}_{-0.48} \text{ (stat.)} {}^{+0.24}_{-0.22} \text{ (exp. syst.)} {}^{+0.14}_{-0.16} \text{ (mod. syst.)} {}^{+0.08}_{-0.06} \text{ (lumi.) fb}$ Significance: 6.5 σ (obs); 4.4 σ (exp. from Sherpa) and 6.5 σ (exp. from Powheg+Pythia8)

INFN

CMS: VBS WZ Phys.Lett. B 795 281-307

CMS VBS WZ: aQGC & limits on H[±]

17/09/19

C.Luci - Precision Test of the SM

ATLAS: VBS WZ Physics Letters B 793 469-492

2016 data: 36.1 fb⁻¹ at 13 TeV

	SR	WZjj-QCD CR	b-CR	ZZ-CR
Data Total predicted	$161 \\ 167 \pm 11$	$\begin{array}{c} 213\\ 204\pm12 \end{array}$	$\begin{array}{c} 141 \\ 146 \pm 11 \end{array}$	52 51.3 ± 7.0
$WZjj-EW (signal)$ $WZjj-QCD$ Misid. leptons $ZZjj-QCD$ tZj $t\bar{t} + V$ $ZZjj-EW$ VVV	$\begin{array}{c} 44\pm11\\ 91\pm10\\ 7.8\pm3.2\\ 11.1\pm2.8\\ 6.2\pm1.1\\ 4.7\pm1.0\\ 1.80\pm0.45\\ 0.59\pm0.15\\ \end{array}$	$\begin{array}{c} 8.52 \pm 0.41 \\ 144 \pm 14 \\ 14.0 \pm 5.7 \\ 18.3 \pm 1.1 \\ 6.3 \pm 1.1 \\ 11.14 \pm 0.37 \\ 0.44 \pm 0.10 \\ 0.93 \pm 0.23 \end{array}$	$\begin{array}{c} 1.38 \pm 0.10 \\ 13.9 \pm 3.8 \\ 23.5 \pm 9.6 \\ 2.35 \pm 0.06 \\ 34.0 \pm 5.3 \\ 71 \pm 15 \\ 0.10 \pm 0.03 \\ 0.13 \pm 0.03 \end{array}$	$\begin{array}{c} 0.211 \pm 0.004 \\ 0.94 \pm 0.14 \\ 0.41 \pm 0.18 \\ 40.8 \pm 7.2 \\ 0.17 \pm 0.04 \\ 3.47 \pm 0.54 \\ 4.2 \pm 1.2 \\ 1.06 \pm 0.30 \end{array}$

A boosted decision tree (BDT) is used to exploit the kinematic difference between the WZjj-EW signal and the WZjj-QCD and other background
 A total of 15 variables are combined in one discriminant.

$$\begin{aligned} \sigma_{WZjj-EW}^{fid} &= 0.57 \,{}^{+0.14}_{-0.13}(stat) \,{}^{+0.05}_{-0.04}(exp.\,syst) \,{}^{+0.05}_{-0.04}(mod.\,exp) \, \pm 0.01 \, (lumi) \, \text{fb} \\ &= 0.57 \,{}^{+0.16}_{-0.14} \, \, \text{fb} \\ \sigma_{WZjj-EW}^{fid-Sherpa} \, 0.321 \, \pm \, 0.002(stat) \, \pm \, 0.005(\text{PDF}) \,{}^{+0.027}_{-0.023} \, (\text{scale}) \, \text{fb} \\ \sigma_{WZjj}^{fid} &= 1.68 \, \pm \, 0.16(stat) \, \pm \, 0.12(exp.\,syst) \, \pm \, 0.13(\text{mod. exp}) \, \pm 0.04 \, (lumi) \, \text{fb} \\ &= 1.68 \, \pm \, 0.25 \, \, \text{fb} \\ \sigma_{WZjj}^{fid-Sherpa} \, 2.15 \, \pm \, 0.01(stat) \, \pm \, 0.05 \, (\text{PDF}) \,{}^{+0.65}_{-0.44} \, (\text{scale}) \, \text{fb} \end{aligned}$$

Significance: 5.3 σ (obs); 3.2 σ (exp.) \rightarrow first observation of EWK WZ jj

ATLAS: VBS ZZ ATLAS-CONF-2019-033

2015-18 dat	2015-18 data: 139 fb ⁻¹ at 13 TeV				
Process	llll j j	llvvjj			
EW ZZjj	20.6 ± 2.5	12.30 ± 0.65			
QCD ZZjj	77 ± 25	17.2 ± 3.5			
QCD ggZZjj	13.1 ± 4.4	3.5 ± 1.1			
Non-resonant- $\ell\ell$	-	21.4 ± 4.8			
WZ	-	22.8 ± 1.1			
Others	3.2 ± 2.1	1.15 ± 0.89			
Total	114 ± 26	78.4 ± 6.2			
Data	127	82			

I N F N

The electroweak signal is extracted using a BDT with 12 (4ℓ) or 13 (2ℓ 2v) variables

Triboson final state (VVV)

Process never observed at previous colliders

Process sensitive to TGC and QGC

WVV analysis strategy

WWW Analysis Cutflow Based	WVZ Analysis BDT Based			
WWW		-		
Avoid Z bosons: 2l2j Analysis - Two Same Sign leptons 3l Analysis - 0 Same Flav. Opposite Sign leptons	Categorize according to 3 ^l or 4 ^l end-states Always reconstruct a Z boson with 2 leptons			
2{2j Analysis	3ł Analysis			
 At least 2 jets with b-jet veto. M_{jj} is used as the discriminant Specific cuts to veto same sign WW 	 At least one jet with b-jet veto. One BDT is trained per jet category: 1, 2, 3+ jets. 4ℓ Analysis 			
3ł Analysis				
 0 SFOS suppresses majority of backgrounds. b-jet veto is additionally applied to veto ttbar events. 	 4 leptons with a total charge of 0 One BDT is trained for each category: Same-flavor on-shell Same-flavor off-shell Different-flavor 			
Used both data-driven and MC-based background estimates with control region				

yiuii

17/09/19

CMS: WWW Phys Rev D 100 012004

2016: 35.9 fb⁻¹ CMS 9 signal regions 35 Charge misassignment -- WWW (stacked) Irreducible 6 from 2ℓ of same sign, m_{jj}-in 30 Data Lost/three leptons γ→lepton consistent as W and m_{ii}-out for Nonprompt leptons X Total uncertainty other selected events 25 3 regions from events with 38 \geq Events 20 **Measurements:** 15 $\sigma(pp \to W^{\pm}W^{\pm}W^{\mp}$ $= 170^{+320}_{-170} fb$ 10 5 aQGC limits on 3 most sensitive couplings 0 $e^{\pm}e^{\pm}$ $e^{\pm}\mu^{\pm}$ 0 SFOS 1 SFOS 2 SFOS $e^{\pm}\mu^{\pm}$ $\mu^{\pm}\mu^{\pm}$ $\mu^{\pm}\mu^{\pm}$ e[±]e[±] Allowed range (TeV^{-4}) Three leptons m_{ii}-in m_{ii}-out Signal regions Anomalous coupling Observed Expected [-1.3, 1.3][-1.2, 1.2] $f_{\rm T.0}/\Lambda^4$ 0.6 CMS CMS 35.9 fb⁻¹ (13 TeV) 35.9 fb⁻¹ (13 TeV) $f_{\mathrm{T},1}/\Lambda^4$ [-3.7, 3.7][-3.3, 3.3]σ(pp→Wa) B(a→WW) [pb] 1/f_a [TeV⁻¹] Median expected Median expected 68% expected $f_{\rm T,2}/\Lambda^4$ [-3.0, 2.9][-2.7, 2.6]68% expected 95% expected 95% expected Theoretical cross section with 1/f_a = 5 TeV Observed Observed 0.4 10 Explore BSM physics based on photophobic axion-0.2 like model (ALP: arxiv:1805.06538) $pp \rightarrow W a (a \rightarrow WW) \rightarrow WWW$ 250 300 350 400 450 500 550 600 300 350 400 450 500 550 600 250 m_a [GeV] m_a [GeV]

17/09/19

C.Luci - Precision Test of the SM

Page 40

ATLAS: WWW+WWZ+WZZ arxiv:1903.10415

ATLAS: WWW+WWZ+WZZ

Decay channel	Significance		
	Observed	Expected	
WWW combined	3.2σ	2.4σ	
$WWW ightarrow \ell u \ell u q q$	4.0σ	1.7σ	
$WWW \rightarrow \ell \nu \ell \nu \ell \nu$	1.0σ	2.0σ	
WVZ combined	3.2σ	2.0σ	
$WVZ ightarrow \ell u qq\ell \ell$	0.5σ	1.0σ	
$WVZ \rightarrow \ell \nu \ell \nu \ell \ell / q q \ell \ell \ell \ell$	3.5σ	1.8σ	
WVV combined	4.1σ	3.1σ	

First evidence of VVV production in *pp* events has been observed with a significance of 4.1 σ compared to expected 3.1 σ

* WVV cross-section measurements, consistent with SM predictions

 $\sigma_{WWW} = 0.65^{+0.16}_{-0.15}(stat) \,{}^{+0.16}_{-0.14}(syst) \, pb$ $\sigma_{WWZ} = 0.55 \pm 0.14(stat) \,{}^{+0.15}_{-0.13}(syst) \, pb$

Summary on multi boson cross sections

Conclusions

- LHC is a ``discovery'' machine but it can do also precision physics.
- M_W and $sin^2\theta_W$ are fundamental parameters of the SM, so they have to be measured with the highest precision we can achieve.
- To be noticed: I presented recent results (2018-2019) based mainly on ``old'' data (2011, 2012, 2016) → it takes a lot of time to make accurate measurements.
- In any case the SM is still solid as ever... but we keep trying.
- Gauge Boson Coupling measurements are still limited by statistical uncertainties, so the full statistics available is required
- LHC will restart in 2021 and we expect about 300 fb⁻¹ in RUN3.
- The long term goal is the 3 ab⁻¹ expected with HL-LHC, but besides the luminosity we need also a major breakthrough in the PDF determinations.

Back-up

C.Luci - Precision Test of the SM

17/09/19

Page 45

The Large Hadron Collider LHC

LHC Luminosity and Energy: 2010 ÷ 2018

LHC: parton-parton interactions

PDFs are parameterizations of the partonic content of the proton:

at Hadron Colliders cross-section calculations are a convolution of the cross-section at parton level and PDFs

$$\sigma_{X} = \sum_{a,b} \int_{0}^{1} dx_{a} dx_{b} f(x_{a}, f lav_{a}, Q^{2}) f(x_{b}, f lav_{b}, Q^{2}) \quad \sigma_{ab \to X}(x_{a}, x_{b}, Q^{2})$$

Sum over initial partonic states a,b Parton Density Function hard scattering cross-section

LHC schedule

In November 2019 there will be a meeting with CERN DG, accelerator and experiments to revisit the schedule

Technical limitation on the Instantaneous Luminosity: Collider (cryolimit in the triplet region) at 2×10³⁴ cm⁻²s⁻¹ twice the nominal design luminosity)

Experiments pile up in the detectors). Designed for peak of 40 they are actually dealing with 60!

Technical limitation on Integrated Luminosity:

Collider (radiation damage to the IT magnets – correctors and quadrupoles) **Experiments** radiation damage in the Inner Tracker)

Constrained PDF uncertainties

- > The observed A_{FB} value depend on PDF distributions and on $sin^2\theta_{eff}$ value.
- > Changes in PDFs produce large changes in A_{FB} when the absolute values of A_{FB} are large (away from the Z pole). In contrast, the effect of changes in $\sin^2\theta_{eff}$ are largest near the Z pole.
- > Because of this behaviour, we could apply a Bayesian χ^2 reweighting method (arxiv:1310.1089) to constrain the PDF, and thereby reduce their uncertainties in the extracted value of sin² θ_{eff} .

EW corrections impact on A_i decomposition

- The polynomial decomposition of the Drell-Yan differential cross section $\frac{d\sigma}{dp_T^{\ell\ell} dy^{\ell\ell} dm^{\ell\ell} d\cos\theta d\phi} = \frac{3}{16\pi} \frac{d\sigma^{U+L}}{dp_T^{\ell\ell} dy^{\ell\ell} dm^{\ell\ell}}$ decouples the angular distribution of the final state from the production variables of the initial state contained in the A_i $\begin{cases} (1 + \cos^2 \theta) + \frac{1}{2} A_0(1 - 3\cos^2 \theta) + A_1 \sin 2\theta \cos \phi + A_1 \sin 2\theta \cos \phi + A_1 \sin 2\theta \cos \phi + A_2 \cos \theta + A_2 \sin^2 \theta \cos 2\phi + A_3 \sin \theta \cos \phi + A_4 \cos \theta + A_5 \sin^2 \theta \sin 2\phi + A_6 \sin 2\theta \sin \phi + A_7 \sin \theta \sin \phi \end{cases}.$
- We can see that aroud the Z pole the box corrections can be neglegted

Large Hadron Electron Collider (LHeC)

- A Large Hadron Electron Collider web page <u>http://lhec.web.cern.ch</u>
- Scattering of 60 GeV electron with 7 TeV proton (CDR done on 2012)
- LHeC is designed to have a factor of 10-20 higher cms energy (s=4E_eE_p) and a factor of nearly 1000 higher luminosity (L near 1 ab⁻¹) than HERA
- LHeC extends the kinematic range accessed with HERA from a maximum momentum transfer squared, Q², of about 0.03 TeV² to above 1 and from a maximum Bjorken x of about 0.6 to 0.9. The low x range extends down to 10⁻⁶.

