XXXIX International Symposium on Physics in Collision (PIC 2019) National Taiwan University, Taipei, Taiwan September 16-20, 2019

SEARCHES FOR HIGGS BEYOND THE STANDARD MODEL AND HIGGS PAIR-PRODUCTION

Stefania Spagnolo INFN Lecce and Dip. Matematica e Fisica, Univ. del Salento on behalf of the ATLAS and CMS experiments

OUTLINE

Searches for BSM Higgs

 searches for new Higgs bosons (neutral and charged) anomalous Higgs (125 GeV) decays

Searches for Higgs pair-production

- resonant and non-resonant
- and interpretation
 - guiding paradigms: 2HDM, 2HDM + a scalar Singlet, Higgs portal to a Hidden Sector
- Based on results of data analyses from ATLAS and CMS with
 - LHC pp collisions at 13 TeV (+8, 7 TeV), typically ~36 fb⁻¹
 - in a some cases full Run2 statistics: 13 TeV, 139 fb⁻¹
 - selection based on results issued in the ~last year (others in backup)

GENERALITIES OF BSM HIGGS

S. Spagnolo/ BSM Higgs and 2Higgs searches

2 HIGGS DOUBLET MODELS

S. Spagnolo/ BSM Higgs and 2Higgs searches

S. Spagnolo/ BSM Higgs and 2Higgs searches

SEARCH FOR A/H IN TYPICAL 2HDM SCENARIOS

Search for heavy A/H decays to fermions

No recent updates of: searches for charged Higgs <u>see in backup</u> searches for A → ZH → II bb <u>in backup</u>

SEARCH FOR HEAVY A/H $\rightarrow tt$

- A/H→tt by CMS (Aug. 2019) with 36fb⁻¹ at 13 TeV (1 lepton or 2 leptons final states)
- Interference with SM top-pair production may be >0 or <0</p>
 - All signal samples (MADGRAPH5 aMC@NL0) reweighed to NNLO (SUSHI) include interference terms;
 SM tt simulation by POWHEG reweighed to NNLO+NNLL
- Info on spin correlation between top retained in decay products
- A complex analysis taking advantage of *angular variables* in a complete event reconstruction

g uuuu \overline{t}

Φ

CMS: ArXiv:1908.01115

ATLAS: PRL119 (2017) 191803, @8TeV

dominant

@ low tanβ

2 leptons

 $_{g}$ mm

Chel cosine of the angle between the

charged lepton momenta in their respective helicity frames

1 lepton

 $\cos\theta_{tl}^*$ cosine of the angle in the tt rest frame between the t decaying semileptonically and the tt-direction in the lab frame

Search for signal based on max. likelihood fit of 2D binned distributions of:

m_{tt} x cosθ_{tl}* m_{tt} x chel 1 lepton 2 leptons

SEARCH FOR HEAVY A/H $\rightarrow tt$

- model independent constraints on H/A couplings to top vs mass for various Γ_A/m_A
 - 0.5%, 1%, 2.5%, 5%, 10%, 25%
 - better sensitivity for large values of Γ_A/m_A

grey shaded curves give the boundary of sensitivity, corresponding to partial width to tt greater than the total width

CMS: ArXiv:1908.01115

ATLAS: PRL119 (2017) 191803 @ 8 TeV

sensitive @ low tanß

A signal-like excess at m_A~400GeV

(1.9 σ global significance)

to be watched out with more statistics

Sep.17th, Taipei, PIC2019

SEARCH FOR HEAVY H IN $b(b)H \rightarrow bb$

sensitive to type II and Y flipped, for high tanß

- ATLAS search for a scalar φ [CP-even or CPodd or a combination] produced in association b-quark(s) with 36 fb⁻¹ at 13 TeV
 - a selection for ≥3 b-jets optimizes S/B
 - events with only 2 b-tagged jets used for QCD CRs, constraining the shape of the background in the SRs
 - trigger based on high E_T b-tagged (1 or 2) jets
 - signal for 15 m_H values is emulated in a point of the MSSM corresponding to high BR to bb, and suppressed tt and ττ coupling

*p*_{T1}, *p*_{T2} and *m*_{bb} are studied with a *Principal Component Analysis* for each mass point,
 m'_{bb} used as discriminating variable in a binned maximum likelihood fit

 $\sigma(pp \rightarrow b\bar{b}\phi) \times \mathcal{B}(\phi \rightarrow b\bar{b}) < 0.6-4.0 \text{ pb}$ for M_{\phi} in 450-1400 GeV. @ 95% CL

CPciation $g = b = \overline{q}$

SEARCH FOR HEAVY H IN $b(b)H \rightarrow bb$

 $\sigma(pp \to b\bar{b}\phi) \times \mathcal{B}(\phi \to b\bar{b}) < 0.6-4.0 \text{ pb}$

for $M\phi$ in 450–1400 GeV. @ 95% CL

sensitive to type II and Y flipped, for high tanβ => interpretation in Y model and several MSSM benchmark scenarios

S. Spagnolo/ BSM Higgs and 2Higgs searches

S. Spagnolo/ BSM Higgs and 2Higgs searches

SEARCH FOR MSSM H $\rightarrow \mu\mu$

An MSSM devised analysis

S. Spagnolo/ BSM Higgs and 2Higgs searches

SEARCH FOR HEAVY $H \rightarrow \mu\mu$

ATLAS: arXiv:1901.08144

A model agnostic analysis

SEARCH FOR A/H IN LESS TYPICAL SCENARIOS

UNCONVENTIONAL MASS HIERARCHY / COUPLINGS

S. Spagnolo/ BSM Higgs and 2Higgs searches

Light NEUTRAL A IN $b(b)A \rightarrow \tau \tau$

sensitive to type II and X, for high $tan\beta$, in canonical mass hierarchy scenarios

- CMS studied also a less conventional scenario using 36 fb⁻¹ at 13 TeV
 - a *light* Higgs (20-70 GeV) decaying to ττ and produced in association with bquarks
 - selection requires one *t_{lep}* and one *t_{had}*
 - maximum likelihood fit of tau-pair invariant mass m_π to extract the signal strength $T = C R^{-1} (40 T_{2})^{1/2} tan \frac{tan \beta > 1.6-37.0}{1.6-37.0}$

S. Spagnolo/ BSM Higgs and 2Higgs searches

S. Spagnolo/ BSM Higgs and 2Higgs searches

SEARCH FOR HEAVY H TO WW

ATLAS: Eur. Phys. J. C 78 (2018) 24

March 2019 CMS: CMS-PAS-HIG-17-033

H → WW (VV in general) strongly suppressed in the alignment limit of 2HDM

- A → WW and A → ZZ are forbidden (at tree level) if the CP symmetry is assumed
- several analyses in the past; the most recent preliminary by CMS (confirming results of ATLAS on the corresponding data set **36fb**⁻¹ **at 13 TeV**) based on *semi-leptonic and leptonic channels* mass range investigated 200 GeV to 3 TeV

S. Spagnolo/ BSM Higgs and 2Higgs searches

STATUS OF A BENCHMARK 2HDM SCENARIO: *hMSSM*

new ATLAS combination for PIC-2019

tan

 \mathbf{S}

hMSSM predictions

σ with SUSHI including
ggF+b-ass.prod at
NNLO in QCD in 5FNS
corrected for extra
contributions
(estimated in 4FNS) to
b-ass.prod according
to recomm. in arXiv:
1112.3478 [hep-ph]

Partial widths and decays with HDECAY

for a discussion of hMSSM LHCHXSWG-2015-002

S. Spagnolo/ BSM Higgs and 2Higgs searches

Sep.17th, Taipei, PIC2019

STATUS OF A BENCHMARK 2HDM SCENARIO: *hMSSM*

new ATLAS combination for PIC-2019

tan

 \mathbf{S}

hMSSM predictions

σ with SUSHI including
ggF+b-ass.prod at
NNLO in QCD in 5FNS
corrected for extra
contributions
(estimated in 4FNS) to
b-ass.prod according
to recomm. in arXiv:
1112.3478 [hep-ph]

Partial widths and decays with HDECAY

for a discussion of hMSSM LHCHXSWG-2015-002

S. Spagnolo/ BSM Higgs and 2Higgs searches

BEYOND 2HDM

Search for Higgs in next to minimal models Higgs portal to a secluded sector LFV Higgs decays

BACK TO GENERALITIES OF BSM HIGGS

S. Spagnolo/ BSM Higgs and 2Higgs searches

2HDM+S SIGNATURES AT LHC

next-to-minimal scenarios

ATLAS:PLB 782 (2018) 750, **h_{sm}→aa→jj**γγ CMS: PLB 79

in backup ATLAS: JHEP06(2018)166, h_{sm}→aa→4leptons

in backup ATLAS: JHEP10 (2018) 031, h_{sm}→aa→bbbb

ATLAS: PLB 790 (2019) 1, **h_{sm}→aa→bbµµ**

CMS: PLB 795(2019)398, **h_{sm}→aa→bbµµ**

<u>see in backup</u>

CMS: ArXiv:1907.07235, **h_{sm}→aa→µµ+2tracks**

CMS: ArXiv:1905.07453, **H+/·→W+/·a→µµµ/µee**

and many others

- several processes allowed in non-minimal supersymmetric SM and the lepton specific and flipped 2HDM+S (a 2HDM model extended with a scalar singlet)
 - 3 CP-even, 2 CP-odd, H⁺,H⁻
 - no S-fermion Yukawa couplings
 - if <u>a₁ mass < 125 GeV</u>, a₁ has large S component
 - production via ggF and associated b production highly suppressed
 - h-> a1a1 is accessible
 - h couplings measurement still allow for B~30% to non-SM particles

STATUS OF A BENCHMARK 2HDM+S SCENARIO: type II tan β =5

- December 2018 ~ PIC-2018
- useful to get a feeling of the channel relative sensitivity

see <u>ATL-PHYS-PUB-2018-045</u> for constraints on many alternate scenarios

S. Spagnolo/ BSM Higgs and 2Higgs searches

STATUS OF A BENCHMARK 2HDM+S SCENARIO: type II tan β =5

- December 2018 ~ PIC-2018
- useful to get a feeling of the channel relative sensitivity

see <u>ATL-PHYS-PUB-2018-045</u> for constraints on many alternate scenarios

S. Spagnolo/ BSM Higgs and 2Higgs searches

$h/H \rightarrow X\gamma \rightarrow \gamma + Invisible$ for m_H in 125 - 300 GeV

X= massless Dark Photon

H produced in association with a Z decaying leptonically

■ 137 fb⁻¹ at 13 TeV

- in the SM $\mathcal{B}(H \rightarrow \gamma Z(vv)) \sim 3x10^{-4}$ below the sensitivity of this analysis and already constrained to $^{\gamma_{D}}$ ~3,4xSM prediction
- main background: WZ (or ZZ) -> ev_eZ (eeZ) with the electron reconstructed as a photon (the second e not reconstructed, undetected); next top, WW, etc
- binned maximum-likelihood fit to m_T distributions in 2(|η_γ|< or >1) signal + 2x3(WZ,ZZ,top) control regions

S. Spagnolo/ BSM Higgs and 2Higgs searches

CMS: arXiv:1908.02699

 Z/γ^*

in the realm of a secluded dark matter sector

Sep.17th, Taipei, PIC2019

Higgs portal to Hidden Sector via Yukawa couplings to WIMPs

PIC2019

NVISIBLE HIGGS DECAYS ATLAS: PRL 122 (2019) 231801 CMS: PLB 793 (2019) 520

Upper limit on B_{H→ inv} ATLAS √s = 7 TeV, 4.7 fb⁻¹ √s = 8 TeV, 20.3 fb⁻¹ Searches for invisible decays of Higgs 0.8 s = 13 TeV, 36.1 fb⁻¹ Observed limit produced in VBF (CMS, ATLAS), in Expected limit $\pm 1\sigma$ 0.6 Expected limit $\pm 2\sigma$ association with Z(II) or Z/W(hadrons) All limits at 95% CL 0.4 (ATLAS) in 36 fb⁻¹ at 13 TeV (and combined with 7 and 8 TeV data) 0.2 ATLAS $\mathcal{B} < 0.26 \ (0.17^{+0.07}_{-0.05}) \ @ 95\% \ CL$ CMS: B < 0.19(0.15) @ 95% CL V(had)H Z(lep)H VBF Combined Combined Combined expected Run 2 Run 2 Run 1 Run 1+2 Run 2 Run 2 Interpreting H→invisible as MIMP-N [cm²] $H \rightarrow \chi \chi$ ($\chi = WIMP$ fermion or scalar) in an EFT ATLAS approach and using $f_N=0.308 \pm 0.018$ $B_{\rm H \rightarrow inv}^{\rm observed} < 0.24$ $\sqrt{s} = 7 \text{ TeV}, 4.7 \text{ fb}^{-1}$ => limit on the WIMP-N cross section. $\sqrt{s} = 8 \text{ TeV}, 20.3 \text{ fb}^{-1}$ All limits at 90% CL $\sqrt{s} = 13 \text{ TeV}, 36.1 \text{ fb}^{-1}$ Recent recasting of results from a Higgs portals search for stop pair production in **Scalar WIMP** CMS : PAS HIG-18-008 **Fermion WIMP** Other experiments \overline{m} ···· Cresst-III DarkSide50 HLUX PandaX-II \overline{m} 10⁻⁴⁶ ···· Xenon1T 36 fb⁻¹ at 13 TeV 10² 10³ 10⁴ see similar 10 $\mathcal{B}(H \rightarrow inv) < 0.46 (0.48)$ interpretation m_{wimP} [Ge√ from CMS.

in backup

S. Spagnolo/ BSM Higgs and 2Higgs searches

LFV DECAYS: $h \rightarrow e \mu$

- ATLAS preliminary search for *h->eµ* decay with full Run2 statistics 139 fb⁻¹ at 13 TeV
- 8 categories of events corresponding to different meµ resolution
 - Combined fit of to the m_{eµ} binned spectra
 - Background (mainly from top-events) from data (sidebands)

700

600

500

400

 $\mathcal{B}(e\mu)_{best fit} =$

100

ATLAS

 $(0.4 \pm 2.9 \text{ (stat.)} \pm 0.3 \text{ (syst.)}) \times 10^{-10}$

Entries / GeV

S. Spagnolo/ BSM Higgs and 2Higgs searches

Sep.17th, Taipei, PIC2019

Preliminary $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$

Background model

Signal (H \rightarrow eµ BF=0.05%)

ATLAS-CONF-2019-03

Data

HIGGS PAIR PRODUCTION

WHY DOES HIGGS PAIR PRODUCTION MATTER ?

• SM prediction for 2H production (in ggF) known to NNLO + NNLL (QCD) and top-quark mass effect at NLO $\sigma_{HH} = 33.53^{+4.3\%}_{-6.0\%}$ (QCD scale) $\pm 5.9\%$ (other) fb

PDF uncertanities α_s uncertanty top-quark mass effect

- Higgs potential (non-resonant):
 - a key/unknown parameter of the EW SSB mechanism: trilinear Higgs coupling gives contributions to Higgs pair-production

$$\frac{2}{\lambda_{HHH}} = \lambda_{SM} \sim m_h^2/(2v^2)$$

Precision electroweak observables (oblique parameters: S,T affected via virtual loop by λ_{HHH}) imply λ_{HHH}/λ_{SM} in [-14, 17.4] PRD 95, 093004 (2017)

- BSM physics (resonant, non-resonant):
 - resonant or anomalous Higgs pair production foreseen in various scenarios:
 - 2HDM
 - Hidden sector models
 - bulk RS models

<u>31</u>

PROBING THE HIGGS POTENTIAL

- in the SM top-loop and 3-linear Higgs coupling diagrams are the dominant contributions
 - large negative interference ! Total cross section depends heavily on the intensity of λ_{HHH}
- a general strategy: probe the Higgs potential via non-resonant production in an EFT approach with dim-6 operators
 - modifiers for the couplings (Higgstop and trilinear Higgs) in the SM diagrams + 3 new couplings;
 5 parameters overall

S. Spagnolo/ BSM Higgs and 2Higgs searches

Probing the higgs potential PRECISION HIGGS MEASUREMENTS AND λ_{HHH}

ATL-PHYS-PUB-2019-009

- single Higgs differential production (cross section and kinematics) and decay measurements provide insight onto Higgs self coupling via loop corrections
- decay channels γγ, ZZ*, WW*, ττ and bb studied at 13 TeV with up to 80 fb⁻¹

S. Spagnolo/ BSM Higgs and 2Higgs searches

PROBING THE HIGGS POTENTIAL COMBINATION OF CROSS SECTION MEASUREMENTS

S. Spagnolo/ BSM Higgs and 2Higgs searches

Sep.17th, Taipei, PIC2019

BSM PHYSICS: RESONANT PRODUCTION COMBINATION OF CROSS SECTION MEASUREMENTS

S. Spagnolo/ BSM Higgs and 2Higgs searches

PROBING THE HIGGS POTENTIAL COMBINATION OF CROSS SECTION MEASUREMENTS

σ_{gg} (pp → HH) [pb]

1⊧

10⁻¹

Limits on σ_{ggF} from a statistical interpretation of data based on κ_{λ} *dependent* cross section and (fully simulated) HH decay kinematics.

10_F

Exp.

(Exp. stat.)

-5.8 – 12.0

(-5.3 - 11.5)

SM

bbγγ bbττ bbbb

Scan on κ_{λ} with all other EFT param.s fixed at SM values.

ATLAS

10

5

Allowed κ_{λ} range

0

√s = 13 TeV

27.5 - 36.1 fb⁻¹

15

20

κ_λ

13 TeV, ~36 fb⁻¹

EFT theory prediction

Exp. 95% CL limits

Obs. 95% CL limits

bbbb

 $b\overline{b}\tau^{+}\tau^{-}$

bbγγ

Comb.

Comb. $\pm 1\sigma$ (exp.)

Comb. $\pm 2\sigma$ (exp.)

Theory prediction

Minimum at κ_{λ} =2.4 corresponds to the minimum σ , maximum interference

CMS: PRL122 (2019) 121803

Observed (expected) allowed range at 95% C.L. $-11.8 < \kappa_{\lambda} < 18.8$ (-7.1 < $\kappa_{\lambda} < 13.6$)

S. Spagnolo/ BSM Higgs and 2Higgs searches

Allowed κ_{λ} interval

at 95% CL

Obs.

-5.0 – 12.0

-20 -15 -10

10-2

PROBING THE HIGGS POTENTIAL ANOTHER SEARCH FOR NON-RESONANT HIGGS PAIR-PRODUCTION 13 TeV, 139 fb-1

S. Spagnolo/ BSM Higgs and 2Higgs searches

HIGGS PAIR PRODUCTION VIA VBF

S. Spagnolo/ BSM Higgs and 2Higgs searches

Sep.17th, Taipei, PIC2019

ATLAS-CONF-2019-030

HIGGS PAIR PRODUCTION VIA VBF

ATLAS-CONF-2019-030

S. Spagnolo/ BSM Higgs and 2Higgs searches

- Find full list of available and future results in
 - https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HDBSPublicResults
 - http://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/ HIG/index.html

CONCLUSIONS

- The puzzles of the SM are likely to be related to the scalar sector
- No signs of deviations from SM so far, but still large room for data reconstruction and analysis improvements, new model testing, new data interpretation ...
- LHC Run2 potential still to be exploited
 - from Run3 to HL-LHC, a long path for a deep scrutiny of tiny effects

BACKUP

for high tanβ

sensitive to type II and X, HEAVY NEUTRAL H IN $b(b)H \rightarrow \tau\tau$

ATLAS: JHEP 01 (2018) 055

constraints already from LEP and Tevatron

experimentally easier that H->bb, published by ATLAS with 36 fb⁻¹ at 13 TeV mass range 0.2-2.25 TeV;

4 categories:

 $T_{lep}T_{had} \xrightarrow{\geq} 1b-jet$ $no \ b-jet$ $T_{had}T_{had} \xrightarrow{\geq} 1b-jet$ $no \ b-jet$

top, $Z(\tau\tau)$ +jets, multi-jet are the largest backgrounds depending on event category

upper limits on oxB between 1 and 0.6x10-2 pb for ggF and 0.7-0.4x10-2 pb for b-ass. production

S. Spagnolo/ BSM Higgs and 2Higgs searches

back

CHARGED HIGGS TO FERMIONS: tb or tv

S. Spagnolo/ BSM Higgs and 2Higgs searches

Sep.17th, Taipei, PIC2019

CHARGED HIGGS TO FERMIONS: tb, TV

CHARGED HIGGS TO FERMIONS: tb, TV

CHARGED HIGGS TO FERMIONS: tb

S. Spagnolo/ BSM Higgs and 2Higgs searches

CMS PAS HIG-18-004

CMS PAS HIG-18-015

ATLAS: JHEP11(2018)085

For backup

Sep.17th, Taipei, PIC2019

CHARGED HIGGS TO FERMIONS: tb

S. Spagnolo/ BSM Higgs and 2Higgs searches

Sep.17th, Taipei, PIC2019

CHARGED HIGGS TO FERMIONS: TV

CMS: JHEP07(2019)142

ATLAS: JHEP09(2018)139

S. Spagnolo/ BSM Higgs and 2Higgs searches

Sep.17th, Taipei, PIC2019

S. Spagnolo/ BSM Higgs and 2Higgs searches

CMS: PAS-HIG-018-023

ATLAS: A→Zh→(II/vv)bb: JHEP 03 (2018) 174

SEARCH FOR $A \rightarrow Zh \rightarrow \ell\ell \tau \tau$

 $\ell\ell + \mu \tau_{\rm h}$ March 2019 4 channels The selection target the *ggF* production mode $\ell\ell + e\tau_h$ used in the $\ell\ell + \tau_h \tau_h$ (b-jet veto to suppress top background) hZA, hW+Hanalysis $\ell\ell + e\mu$ couplings No deviations w.r.t. SM predictions are observed $\sim \cos(\beta - \alpha)$ 220-400 GeV, limits on cross section x BR in MSSM m_A range interpretation in benchmark MSSM scenarios 35.9 fb⁻¹ (13 TeV) CMS Preliminary **CMS** Preliminary 35.9 fb⁻¹ (13 TeV) tanβ → الحد) (fb) 95% CL upper limits 95% CL upper limits hMSSM Observed 30 $\sigma(ggA) B (A \rightarrow Zh \rightarrow Ihrt) (fb)$ Observed Median expected Median expected 68% expected 68% expected 18 fb 25 95% expected 95% expected ص(ggA+bbA) *B* (A−− 20 fb 15 10 tanβ 5 < 2.6 250 300 350 400 m_A (GeV) 220 240 260 280 300 320 340 360 380 400 m_A (GeV) for example, at $m_A=250$ GeV, $\sigma x \mathcal{B} > 18$ fb is excluded => tan $\beta < 2.6$ is excluded 51

S. Spagnolo/ BSM Higgs and 2Higgs searches

ATLAS: PRL 113 (2014) 171801

SM-like H >> $\gamma\gamma$ at intermediate mass

- Search in the range 65-600 GeV with 8 TeV (20 fb⁻¹)
- two-γ final state

SEARCH FOR HIGH MASS VV RESONANCES (fully hadronic channel)

- ATLAS search for narrow di-boson resonances at m >1.3 TeV with 139 fb⁻¹ at 13 TeV in the fully hadronic final state two large-Radius jets, R=1.0
 - Interpretation in benchmark **spin-0**,1,2 model => **Radion** (in warped extra-dimensions) decaying to WW or ZZ...
 - Efficient V=Z,W tagging is crucial for S/B -> Jet mass, substructure properties D2 => new reco techniques
 - jets from TrackCaloClusters [combined and neutral] (merging direction info from tracking with energy info from Calo)
 - **n**trk in jet => lower in gluon-initiated jets
 - $|y_{12}| < 1.2$ and $A = (p_{T1} p_{T2}) / (p_{T1} + p_{T2}) < 0.15$ to suppress background
 - \checkmark Efficiency x acceptance is ~5% from m < 5 TeV
 - \checkmark For m=2 TeV, m_{JJ} distributions with a width of ~10% of the peak isobtained

For backup

Great improvement in jet

ATLAS: arXiv:1906.08589

ATLAS Simulation substructure resolution

Randall-Sundrum warped Extra Dimension models Radions are scalar (spin 0) excitations of the gravitational field

0.7

Radions couple to fermions proportionally to m_f and to bosons proportionally to mb²

Mass [TeV]	Observed Limit [fb]	Expe	cted Limit [fb]	Prediction [fb]		
2.0	5.72		5.75	4.286		
3.0	1.86 Ra	dion	2.85	0.415		
4.0	1.98	aion	2.34	0.040		
5.0	1.98		2.02	0.006		

Sep.17th, Taipei, PIC2019

S. Spagnolo/ BSM Higgs and 2Higgs searches

LFV DECAYS: *h*→*te, tµ*

 $H \to \mu \tau$ <0.25 (0.25)% $H \to e \tau$ <0.61 (0.37) % BR limits @ 95% CL

S. Spagnolo/ BSM Higgs and 2Higgs searches

back

Sep.17th, Taipei, PIC2019

LFV DECAYS: HEAVY $h \rightarrow \tau e, \tau \mu$

- preliminary recent CMS results on 13 TeV, 36fb⁻¹ May 2019:
 - direct search for $H \rightarrow \mu \tau_h, H \rightarrow \mu \tau_e, H \rightarrow e \tau_h, H \rightarrow e \tau_\mu$

S. Spagnolo/ BSM Higgs and 2Higgs searches

Sep.17th, Taipei, PIC2019

For backup

CMS PAS HIG-18-017

$h_{SM} \rightarrow aa \rightarrow 4b$ for $c\tau_a < 6mm$, m_a in 20-60 GeV

$H^{+/-}W^{+/-}A^{-}\mu\mu\mu/\mu ee$

 H^+

999999 00000

CMS: ArXiv:1905.07453

May 2019

For backup

Inspired by R. Dermisek, E. Lunghi, A. Raval HEP04(2013)063

H^{+/-} produced in a top decay

 $H^{+/-} \rightarrow W^{+/-} A$ is the dominant decay mode if H^{+/-} is lighter than the top

A→µµ an easy signature

singlet extensions of the two Higgs doublet model allows for this decay mode of the charged Higgs, while being compatible with a SM-like scalar at ~125 GeV

S. Spagnolo/ BSM Higgs and 2Higgs searches

Sep.17th, Taipei, PIC2019

CMS: arXiv:1812.06359, PLB795(2019)398, h_{sm}→aa→bbµµ

For backup $h_{SM} \rightarrow a_1a_1 \rightarrow \mu\mu + 2tracks$ $\mu\mu\tau\tau$ $\tau\tau\tau\tau$

- CMS: ArXiv:1907.07235, July 2019: H->aa->µµ+2tracks
- a process allowed in non-minimal supersymmetric SM and the lepton specific and flipped 2HDM+S (a 2HDM model extended with a scalar singlet)

S. Spagnolo/ BSM Higgs and 2Higgs searches

Sep.17th, Taipei, PIC2019

15

60

m_{a,} [GeV]

10

ATLAS: JHEP06(2018)166

$H \rightarrow XX/ZX \rightarrow 4$ leptons

S. Spagnolo/ BSM Higgs and 2Higgs searches

INVISIBLE HIGGS DECAYS

Higgs portal to Hidden Sector via Yukawa couplings to WIMPs

CMS: PLB 793 (2019) 520

Combination of direct searches for invisible decays of Higgs produced in VBF, in association with Z(II) or Z/ W(hadrons) in 36 fb⁻¹ at 13 TeV (and combined back with 7 and 8 TeV data)

Combined 7+8 TeV

Combined 7+8+13 TeV Combined 13 TeV

INVISIBLE HIGGS DECAYS

Higgs portal to Hidden Sector via Yukawa couplings to WIMPs

ATLAS: PRL 122 (2019) 231801

S. Spagnolo/ BSM Higgs and 2Higgs searches

BSM PHYSICS: RESONANT PRODUCTION COMBINATION OF CROSS SECTION MEASUREMENTS

S. Spagnolo/ BSM Higgs and 2Higgs searches

Sep.17th, Taipei, PIC2019

BSM PHYSICS: RESONANT PRODUCTION ANOTHER SEARCH FOR RESONANT HIGGS PAIR-PRODUCTION

HH→bbZZ→bb ℓℓ jj

Parameter setting:

 $k = k/M_{Pl}$ and we consider k = 0.1

→bb ll VV

 $1/\lambda^2_R$ is proportional to the radion production cross section (λ_R =1TeV)

13 TeV, ~36 fb⁻¹

CMS PAS HIG-18-013

RS1: a RS model with one warped extradimension (with a non-factorizable geometry)

SM particles do not propagate in the extra dimension Other parameters (relevant for the graviton production): $KL=35 \rightarrow$ warp factor e^{-KL}

new particles can decay to Higgs pairs:

radion, spin 0,

first KK excitation, spin 2

S. Spagnolo/ BSM Higgs and 2Higgs searches

PROBING THE HIGGS POTENTIAL EXTRAPOLATION TO HL-LHC

Extrapolation of the most 13 TeV, ~36 fb⁻¹ => k_{λ} >7 (10) excluded at 95% CL today sensitive analyses @ HL-LHC

S. Spagnolo/ BSM Higgs and 2Higgs searches

MSSM BENCHMARKS AFTER 2012

- MSSM Higgs sector at tree level depends only upon m_A and tanβ
 - at higher orders other parameters enter the play
 - dominant contributions: $\sim m^4_{top}$, $\sim \log M_S$, $\sim A^2_t$
- Carena et al., arXiv:1302.7033, evolution of benchmarks proposed before 2012, meant to guarantee compatibility with m_h~125 GeV: m_h^{mod+/-} and others
 - SUSY breaking scale: $M_S = 1$ TeV, higgsino mass parameter: $\mu = 200$ GeV, stop coupling to Higgs: $A_t = X_t + \mu \cot\beta$, with $X_t/M_S = 1.5$ (-1.9) [stop mass mixing par.] in the on-shell scheme
- Djuadi et al., arXiv:1307.5205 imposes m_h = 125 GeV: hMSSM
 - if m_h = 125 GeV the MSSM Higgs sector with one loop and (most of) two-loop corrections to Higgs masses depends only on m_A and tanβ
 - underlying assumptions: the Higgs sector is CP conserving, all superparticles are too heavy to affect Higgs production and decays, any non-decoupling SUSY corrections to the Higgs couplings are negligible, the radiative corrections to the elements other than (2, 2) in the mass matrix of the neutral CP-even Higgs states are negligible

MOD+/- MSSM BENCHMARK

Carena et al. : arXiv:1302.7033

	Parameter	m_h^{\max}	$m_h^{\rm mod+}$	$m_h^{ m mod}-$	$light\ stop$	$light\ stau$	au-phobic	$low-M_H$	
	m_t	173.2	173.2	173.2	173.2	173.2	173.2	173.2	
	M_A	varied	varied	varied	varied	varied	varied	110	
	aneta	varied	varied	varied	varied	varied	varied	varied	
$M_{\tilde{t}_L} = M_{\tilde{b}_L} = M_{\tilde{t}_R} = M_{\tilde{b}_R} =:$	$M_{\rm SUSY}$	1000	1000	1000	500	1000	1500	1500	
	$M_{\tilde{l}_3}$	1000	1000	1000	1000	245 (250)	500	1000	
stop mass mixing parameter	$X_t^{ m OS}/M_{ m SUSY}$	2.0	1.5	-1.9	2.0	1.6	2.45	2.45	
stop mass mixing parameter	$X_t^{\overline{\rm MS}}/M_{\rm SUSY}$	$\sqrt{6}$	1.6	-2.2	2.2	1.7	2.9	2.9	
	A_t	Given by $A_t = X_t + \mu \cot \beta$							
of b, tau and top to the higgs	A_b	$= A_t$	$= A_t$	$= A_t$	$= A_t$	$= A_t$	$= A_t$	$= A_t$	
	A_{τ}	$= A_t$	$= A_t$	$= A_t$	$= A_t$	0	0	$= A_t$	
higgsino mass parameter	μ	200	200	200	350	500 (450)	2000	varied	
gaugino mass parameters, M_2	M_1	Fixed by GUT relation to M_2							
and M_1 related to M2 via tan β	M_2	200	200	200	350	200 (400)	200	200	
	$m_{ ilde{g}}$	1500	1500	1500	1500	1500	1500	1500	
	$M_{\tilde{q}_{1,2}}$	1500	1500	1500	1500	1500	1500	1500	
	$M_{\tilde{l}_{1,2}}$	500	500	500	500	500	500	500	
	$A_{f eq t,b, au}$	0	0	0	0	0	0	0	

S. Spagnolo/ BSM Higgs and 2Higgs searches

2HDM FEATURES AND UNDERLYING NEW PHYSICS

S. Spagnolo/ BSM Higgs and 2Higgs searches

Sep.17th, Taipei, PIC2019

back