

Searches for Supersymmetric Particles in the electroweak sector

Illia Babounikau on behalf of the ATLAS and CMS collaborations PIC2019, Taipei

Supersymmetry and MSSM

Supersymmetry (SUSY) relates two classes of particles, bosons (integer spin) and fermions (half-integer spin)

Minimal Supersymmetric Standard Model (MSSM) is supersymmetric SM extension with the minimal number of new particle states and new interactions

Dark matter candidate: Stable Lightest

 Supersymmetric Particle (LSP)

Unification of the forces at about 10¹⁶ GeV

R-parity conservation

 $P_R = (-1)^{2S+3(B-L)}$

o without SUSY

with SUSY

Energy in GeV

 $1/\alpha_1$

 $1/\alpha$

 $1/\alpha$

. . . . 1

60

50

40

30

20

10

0

- SUSY can solve some of the SM problems and it is sufficient part of many new physics models.
 - SUSY must be broken \rightarrow sparticles mass scale is undetermined
- Some hints why electroweak SUSY particles can be light:
 - Low fine-tuning \rightarrow higgsinos mass is close to the weak sector
 - LSP co-annihilation with NLSP could explain the observed dark matter density → NLSP should have mass close to that of LSP
 - SUSY can explain ~3 σ deviation of muon g 2 from SM prediction \rightarrow light smuon and chargino

More motivation

- Limits from CMS and ATLAS on strong SUSY production are already pretty high → electroweak could be important to discover SUSY at the LHC
- Likelihood analysis of experimental constraints predicts light charginos, neutralinos and sleptons (arXiv:1710.11091v2)

Illia Babounikau

Mass / GeV

LHC

Illia Babounikau

CMS and **ATLAS**

17.09.19 PIC2019

Illia Babounikau

8

Analysis strategies

- Standard search
 - R-parity conservation → sparticles are produced in pairs and LSP is stable
 - Signature: energetic final SM particles + missing transverse momentum
 - Two major background approaches:
 - Data-driven techniques
 - MC corrected and normalized in dedicated control regions
 - Signal regions in bins of kinematic variables or MVA output
 - M_{T2} "stransverse" mass

$$\mathbf{M^2_{T2}} \;=\; \min_{\vec{k_T} + \vec{l_T} = tot \; miss \; \vec{p_T}} \left\{ max \Big[\mathbf{M^2_T}(chain \; 1), \mathbf{M^2_T}(chain \; 2) \Big] \right\} \;\leq\; m^2_{\boldsymbol{\widetilde{\tau}}}$$

Analysis strategies

- Compressed mass spectra
 - Highly motivated by LSP co-annihilation mechanism
 - Δm between LSP and NLSP is small \rightarrow soft SM particles
 - The topology is boosted (for example by ISR jet)

p

Electroweak SUSY searches

Covered in this talk

Analysis Model **Final state** Luminosity Analysis identifier Stau search $\tau_{\mu}\tau_{\mu}, \tau_{\mu}\mu, \tau_{\mu}e$ **Direct stau** 77 fb-1 (CMS) arXiv:1907.13179 139 fb-1 (ATLAS) ATLAS-CONF-2019-018 $l j_b j_b$ Chargino-Neutralino 139 fb-1 (ATLAS) Chargino-ATLAS-CONF-2019-031 Neutralino production *1±1*□ Chargino and Charginos and 139 fb-1 (ATLAS) arXiv:1908.08215 slepton search sleptons $\gamma\gamma, \gamma l, \gamma+pTmiss$ Gauge-mediated Chargino-Neutralino 35.9 fb-1 (CMS) arXiv:1907.00857 (Gravitino as LSP) supersymmetry $l^{\pm}l^{\Box}$ + ISR jet Electroweak Chargino-Neutralino 139 fb-1 (ATLAS) ATLAS-CONF-2019-014 production in and sleptons compressed mass spectra j j + 0 or $1 l/\tau_{l}$ The vector boson Chargino-Neutralino 35.9 fb-1 (CMS) arXiv:1905.13059v1 fusion topology τ_{L} + ISR jet Indirect stau Chargino-Neutralino 77 fb-1 (CMS) **CMS PAS SUS-19-002**

Chargino and slepton search

 ν/ℓ

 ℓ/ν

arXiv:1908.08215

Signature

 Two opposite-charge leptons (electrons or muons) + significant missing transverse momentum (139 fb⁻¹)

Main backgrounds

- Irreducible: SM diboson (WW, WZ, ZZ) and top-quark
- Reducible: fake leptons

17.09.19 PIC2019

Illia Babounikau

Gauge-mediated supersymmetry

arXiv:1907.00857

- Signature (35.9 fb⁻¹)
- two isolated photons
- Or one isolated photon as well as one isolated charged lepton
- Or one isolated photon and significant missing transverse momentum
- Or one isolated photon and significant hadronic activity

Main backgrounds

 Vector boson+γ, quantum chromodynamics (QCD) multijet processes and γ+jets

Gauge-mediated supersymmetry

arXiv:1907.00857

17.09.19 PIC2019

Illia Babounikau

Chargino-Neutralino search

ATLAS-CONF-2019-031 New

p

p

W

Signature

 Lepton (electron or muon) + two jets originating from the fragmentation of b-quarks (139 fb⁻¹)

Main backgrounds

t t
 t

 t

 t

 t

 t

 t

 t

 t

 t

 t

 t

 t

 t

 t

 t

 t

 t

 t

 t

 t

 t

 t

 t

 t

 t

 t

 t

 t

 t

 t

 t

 t

 t

 t

 t

 t

 t

 t

 t

 t

 t

 t

 t

 t

 t

 t

 t

 t

 t

Chargino-Neutralino search

ATLAS-CONF-2019-031 New XPERIMEI

For small $\tilde{\chi}_{1}^{0}$ masses exclude $\tilde{\chi}_{2}^{0}$, $\tilde{\chi}_{1}^{\pm}$ with mass below 750 GeV \rightarrow the most sensitive analysis for this model in the high mass region

17.09.19 PIC2019

Stau search

arXiv:1907.13179

ATLAS-CONF-2019-018

Signature

- ATLAS: two oppositely charged hadronically decaying tau + missing transverse momentum (139 fb⁻¹)
- CMS: combination of full-hadronic and semileptonic channels (77.2 fb⁻¹)

Main backgrounds

- Jets faking hadronic taus
- Geniune tau from Z or W decay

 $\widetilde{\chi}_1^0$

 $\cdot \cdot \widetilde{\chi}_{1}^{0}$

 τ

ATLAS: excludes of tau sleptons with masses between 120 and 390 GeV, CMS: closes the hole between 90 and 120 GeV for small $\tilde{\chi}_{1}^{0}$ masses

Left-handed scenario

ATLAS: excludes for the first time tau sleptons in the left-handed scenario with masses between 150 and 300 GeV for small $\tilde{\chi}_{1}^{0}$ masses

Compressed mass spectra

Electroweak production in compressed mass spectra ATLAS-CONE-2019-01

Signature

- Two soft same-flavour opposite-charge leptons (electrons or muons) or one soft lepton and one track
- Significant missing transverse momentum + ISR jet (139 fb⁻¹)
 Main backgrounds
- irreducible backgrounds (both leptons are genuine): tt̄/tW, WW/WZ, and Z(→ττ)+jets.
- Reducible backgrounds (one lepton is non genuine): jets misidentified as leptons, photon conversions, or semileptonic decays of heavy-flavour hadrons

Illia Babounikau

Electroweak production in compressed mass spectra ATLAS-CONF-2019-014

Exclude $\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{*}$ (higgsino) up to 162 GeV mass for a mass splitting of 10 GeV Exclude light-flavour sleptons below 256 GeV mass for a mass splitting of 10 GeV

The vector boson fusion topology arXiv:1905.13059v1

Signature

- two oppositely directed forward jets (define VBF topology) + significant missing transverse momentum + 0 or 1 soft lepton (35.9 fb⁻¹) Main backgrounds
- t t̄, W+jets, Z+jets, and Z(→vv)+jets
 QCD

The vector boson fusion topology

arXiv:1905.13059v1

For a mass splitting of 1 (30) GeV: Exclude $\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{\pm}$ (decay through sleptons) up to 112 (215) GeV mass Exclude $\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{\pm}$ (decay through gauge bosons) up to 112 (175) GeV mass

for a mass splitting of 50 GeV

17.09.19 PIC2019

Illia Babounikau

25

Summary

 $\widetilde{\chi}_{1}^{\pm}\widetilde{\chi}_{2}^{0}$ via

 $\widetilde{\chi}_1^+ \widetilde{\chi}_1^-$ via

WW

WZ

arXiv:1403.5294

arXiv:1803.02762

arXiv:1806.02293

arxiv:1812.09432

21

arXiv:1403.5294

21+31

- More and more analysis are updated with full Run 2 luminosity
- Many new physically motivated specific simplified models
- More attention at the compressed spectrum

vs=8.13 TeV. 20.3-139 fb

700

800

m($\tilde{\chi}_1^{\pm}, \tilde{\chi}_2^0$) [GeV]

600

More analyses will come soon!

ATLAS Preliminary

17.09.19 PIC2019

300

400

500

July 2019

350

300

250

200

150

100

50

100

200

m($\tilde{\chi}_1^0$) [GeV]

17.09.19 PIC2019

Illia Babounikau

27

Chargino and neutralino decay through Higgs boson

CMS PAS SUS-18-007

ATLAS-CONF-2019-01

Signature (77.5 fb⁻¹ CMS, 139 fb⁻¹ ATLAS)

- two isolated photons $(H \rightarrow \gamma \gamma \text{ tag})$
- one isolated light lepton or two soft same-flavour opposite-charge leptons (electrons or muons) with invariant mass close to m_z (CMS only)

Main backgrounds

- Non-resonant: diphotons or a photon and a jet via QCD processes
- Resonant: SM Higgs boson production

17.09.19 PIC2019

Illia Babounikau

30

Chargino and neutralino decay through Higgs boson CMS PAS SUS-18-007 ATLAS-CONF-2019-

019

Table 1.	Criteria	used in	the cateou	orization

Channels	Names	Selection				
	Category 1	$0 < S_{E_{ ext{T}}^{ ext{miss}}} \leq 2, N_\ell \geq 1$				
	Category 2	$2 < S_{E_{\mathrm{T}}^{\mathrm{miss}}} \leq 4, N_{\ell} \geq 1$				
Leptonic	Category 3	$4 < S_{E_{T}^{\mathrm{miss}}} \leq 6, N_{\ell} \geq 1$				
	Category 4	$S_{E_{\mathrm{T}}^{\mathrm{min}}} > 6, N_{\ell} \ge 1$				
	Category 5	$5 < S_{E_{T}^{\text{miss}}} \le 6, N_{\ell} = 0, N_j \ge 2, M_{jj} \in [40, 120] \text{ GeV}$				
	Category 6	$6 < S_{E_T^{\text{miss}}} \le 7, N_\ell = 0, N_j \ge 2, M_{jj} \in [40, 120] \text{ GeV}$				
Hadronic	Category 7	$7 < S_{E_{T}^{\text{miss}}} \le 8, N_{\ell} = 0, N_j \ge 2, M_{jj} \in [40, 120] \text{ GeV}$				
	Category 8	$S_{E_{\rm T}^{\rm miss}} > 8, N_{\ell} = 0, N_j \ge 2, M_{jj} \in [40, 120] \text{ GeV}$				
	Category 9	$6 < S_{E_{T}^{\text{miss}}} \le 7, N_{\ell} = 0, N_j < 2 \text{ or } (N_j \ge 2, M_{jj} \notin [40, 120] \text{ GeV})$				
Rest	Category 10	$7 < S_{E_{T}^{\text{miss}}} \le 8, N_{\ell} = 0, N_j < 2 \text{ or } (N_j \ge 2, M_{jj} \notin [40, 120] \text{ GeV})$				
	Category 11	$8 < S_{E_{T}^{\text{miss}}} \le 9, N_{\ell} = 0, N_j < 2 \text{ or } (N_j \ge 2, M_{jj} \notin [40, 120] \text{ GeV})$				
	Category 12	$S_{E_{\rm T}^{\rm miss}} > 9, N_{\ell} = 0, N_j < 2 \text{ or } (N_j \ge 2, M_{jj} \notin [40, 120] \text{ GeV})$				

Summary plots

For small $\tilde{\chi}_{1}^{0}$ masses exclude $\tilde{\chi}_{2}^{0}$, $\tilde{\chi}_{1}^{\pm}$ with mass below 750 GeV \rightarrow the most sensitive analysis for this model

Electroweak production in compressed mass spectra ATLAS-CONF-2019-014

	Electroweakino SR Requirements				
Variable	Low- $E_{\rm T}^{\rm miss}$, low- Δm	Low- $E_{\rm T}^{\rm miss}$, high- Δm	High- $E_{\rm T}^{\rm miss}$	$1\ell 1T$	
$E_{\rm T}^{\rm miss}$ [GeV]	[120, 200]	[120, 200]	> 200	> 200	
$E_{\rm T}^{\rm miss}/H_{\rm T}^{\rm lep}$	> 10	< 10	_	> 30	
$\Delta \phi(\text{lep}, \mathbf{p}_{\text{T}}^{\text{miss}})$	_	_	-	< 1.0	
Lepton or track $p_{\rm T}$ [GeV]	_	$p_{\rm T}^{\ell_2} > 5 + m_{\ell\ell}/4$	$p_{\rm T}^{\ell_2} > \min(10, 2 + m_{\ell\ell}/3)$	$p_{\rm T}^{\rm track} < 5$	
$M_{\rm T}^{\rm S}$ [GeV]	< 50	_	_	_	
$m_{\mathrm{T}}^{\ell_1}$ [GeV]	_	[10, 60]	< 60	_	
R _{ISR}	_	[0.8, 1.0]	$[\max(0.85, 0.98 - 0.02 \times m_{\ell\ell}), 1.0]$	_	

ENT

RI

Gauge-mediated supersymmetry

arXiv:1907.00857

 $M_3 = \mu = 8 \text{ TeV}$ $m_Q = m_U = 10 \text{ TeV}$ $m_D = 8 \text{ TeV}$ $M_{mess} = 10^{15} \text{ GeV}$ Gravitino mass = 10 eV

General Gauge Mediation Exclude M_2 up to 1100 GeV Exclude $\tilde{\chi}_1^{\pm}$ up to 890 GeV

Gauge-mediated supersymmetry

arXiv:1907.00857

Signature (35.9 fb⁻¹)

- two isolated photons
- Or one isolated photon as well as one isolated charged lepton
- Or one isolated photon and significant missing transverse momentum
- Or one isolated photon and significant hadronic activity

Main backgrounds

 Vector boson+γ, quantum chromodynamics (QCD) multijet processes and γ+jets

Summary plots

Gauge-mediated supersymmetry

CMS PAS SUS-18-005

ΝT

F

F

FR

Chargino and slepton search

arXiv:1908.08215 P E R I M E N T

Stau search

Table 1: Summary of selection requirements for the signal regions.

17.09.19 PIC2019

Illia Babounikau

Search for direct chargino pair production with W-boson mediated decays in events with two leptons and missing transverse morterstum^{F-2018-}

Signature

with two isolated leptons (electron or muon), missing transverse

momentum and at most one light jet in the final state

Main backgrounds

17.09.19 PIC2019

CMS

41

Supersymmetry and MSSM

Supersymmetry (SUSY) relates two classes of particles, bosons (integer spin) and fermions (half-integer spin)

Minimal Supersymmetric Standard Model (MSSM) is supersymmetric SM extension with the minimal number of new particle states and new interactions

Illia Babounikau