SEARCHES FOR STRONGLY INTERACTING SUSY PARTICLES

DANIJELA BOGAVAC (IFAE - BARCELONA) ON BEHALF OF THE ATLAS AND CMS COLLABORATIONS

SUPERSYMMETRY

- **Standard Model (SM)** is a very successful theory and has been found to be in agreement with experimental measurements, but it does not explain problems such as:
 - hierarchy problem,
 - Dark Matter (DM),...
- **Supersymmetry (SUSY)** can solve these problems by introducing a super partner (SUSY particle) for each SM particle:

SM particles

 $R=(-1)^{3(B-L)+2s}$

R = { +1 for SM particles -1 for SUSY particles

R-parity conservation

- SUSY particles pair-produced
- Lightest SUSY particle (LSP) is stable
- DM candidate

2

IFAE

SUSY particles

R-parity violation

• LSP not necessarily neutral and stable

SUPERSYMMETRY @ LARGE HADRON COLLIDER

SUSY particles can be produced by several mechanisms @ the LHC

In this talk, the main focus will be on:

1) Strong production of squarks (1st and 2nd generations) and gluinos

- High cross-section
- Sensitivity up to high SUSY particle masses
- Jet-rich final states

2) 3rd generation of squarks (stop and sbottom)

- Lower cross-sections than for the $1^{\rm st}\,and\,2^{nd}$ generations of squarks and gluinos
- Light 3rd generation squarks preferred by naturalness arguments
- Final states with b-jets

protions antiprotions 10.5 electrons resolutions electrons

A Solution of the CTS of

PIC/17.09.2019

3

FAE

• Fantastic performance of the LHC, ATLAS and CMS during the Run 2 data taking

- In this talk, only **results** obtained analyzing the **full Run 2 dataset**
- All the other SUSY results are available:

ATLAS SUSY public results page: <u>here</u> && **CMS** SUSY public results page: <u>here</u>

PIC/17.09.2019

Searches for strongly interacting SUSY particles - Danijela Bogavac (IFAE-Barcelona)

Search for direct top squark pair production in the 3-body decay mode with a final state containing out lepton, jets, and missing transverse momentum in $\sqrt{s} = 13 \text{ TeV } pp$ collision data with the ATL AS detector

OVERVIEW OF RECENT SUSY SEARCHES*

* Only searches for squarks and gluinos

5

IFAE

FULL RUN 2 DATASET

Channel	Link	Channel	Link
OL 2-6 jets	<u>CONF-2019-040</u>	OL with MT2	SUS-19-005
≥ 2L SS	<u>CONF-2019-015</u>	OL with MHT	<u>SUS-19-006</u>
Stop Z	<u>CONF-2019-016</u>	$1 \mathrm{L} \operatorname{with} \mathrm{M}_{\mathrm{J}}$	SUS-19-007
Stop 1L	<u>CONF-2019-017</u>	≥ 2L SS	SUS-19-008
Sbottom	arXiv:1908.03122	Stop 1L	<u>SUS-19-009</u>

PIC/17.09.2019 Searches for strong

Searches for strongly interacting SUSY particles - Danijela Bogavac (IFAE-Barcelona)

SEARCHES FOR SUPERSYMMETRIC PARTICLES

• Both experiments employ similar analysis strategy

Study a specific decay chain using **simplified model**:

- Simple approach for SUSY searches with small number of particles
- Assumed branching ratio usually 100%
- Decays described by masses and cross-sections
- **Signal region (SR)** designed based on requirements on signal/background discriminating variables to target specific decay chains

Background estimation:

- MC normalized data in process-enhanced control regions (CRs) for dominant backgrounds
- Data-driven estimates for fake/non-prompt leptons, fake E_T^{miss}
- MC simulated data for additional backgrounds
- Validation regions (VRs) used to check the assumptions in the background estimate and the $CR \rightarrow SR$ extrapolation

Unblinded SR, and:

- celebrate in the case of excess
- if there is no the excess, set model limits and keep the dream alive!

Searches for strongly interacting SUSY particles - Danijela Bogavac (IFAE-Barcelona)

- Searches for squarks (1st and 2nd generations) and gluinos with jets
- Wide range of signal models:

PIC/17.09.2019

• Final state contains OL, high jet multiplicity and large E_T^{miss}

Two sets of SRs are defined using different jet multiplicities, E_T^{miss} , $\Delta \phi(j_i, p_T^{miss})_{min}$, m_{eff}

either specific range of kinematic variables or values of the BDT output variable

Searches for strongly interacting SUSY particles - Danijela Bogavac (IFAE-Barcelona)

• Searches for squarks $(1^{st}, 2^{nd} \text{ and } 3^{rd} \text{ generations})$ and gluinos with jets

• Final state contains OL, high jet multiplicity and large E_T^{miss}

Two sets of **SRs** are defined using various discriminating variables such as:

$$\mathbf{n}_{\mathbf{j}}, \, \mathbf{n}_{\mathbf{b}}, \, H_T = \sum_{jets} |\overrightarrow{p}_T|$$

4

or

transverse momentum imbalance inferred through M_{T2}

$$M_{\text{T2}} = \min_{\vec{p}_{\text{T}}^{\text{miss}X(1)} + \vec{p}_{\text{T}}^{\text{miss}X(2)} = \vec{p}_{\text{T}}^{\text{miss}}} \left[\max\left(M_{\text{T}}^{(1)}, M_{\text{T}}^{(2)}\right) \right]$$

variable MHT

$$MHT = |-\sum_{jets} \overrightarrow{p}_T|$$

SUS-19-005

tt(+EW) & single top

SM Total

Data

W+jets

Z+jets

Diboson

tt CR

√s=13 TeV, 139 fb⁻¹

CRT for MB-GGd

Events / 200 GeV

10⁴

10³

10²

ATLAS Preliminary

Dominant backgrounds estimated in **CRs** defined for each **SR**:

- tt

 W+jets
- CRs with an isolated lepton
- Z+jets \rightarrow CR with an isolated photon or 2 leptons

SQUARK-PAIR PRODUCTION

Squark masses up to **1.94 TeV** (ATLAS) and **1.77 TeV** (CMS) excluded for low LSP masses

11

IFAE

Searches for strongly interacting SUSY particles - Danijela Bogavac (IFAE-Barcelona)

PIC/17.09.2019

GLUINO-PAIR PRODUCTION

Mass limits have reached ~ 2.3 TeV (ATLAS) and ~ 2 TeV (CMS) for low LSP masses

the interpretations of the other signal models:

1-step squark-pair/gluino-pair decays, inclusive ... see backup slides

PIC/17.09.2019

Searches for strongly interacting SUSY particles - Danijela Bogavac (IFAE-Barcelona)

╒┽╡┋

SEARCHES FOR GLUINOS WITH A LEPTON

• Searches for gluinos in events with exactly one lepton and jets

- 1 lepton,
- jets including at least one b-jet, and
- large E_T^{miss}

SRs are defined using kinematic variables such as:

$$m_T = \sqrt{2p_T^l p_T^{miss} [1 - \cos(\Delta \phi_{l, p_T^{miss}})]} \text{ and } M_J = \sum_{J_i = large - Rjets} m(J_i)$$

additional bins in p_T^{miss} , n_j and n_b to improve sensitivity

SUS-19-007

SEARCHES FOR GLUINOS WITH A LEPTON

Searches for strongly interacting SUSY particles - Danijela Bogavac (IFAE-Barcelona)

PIC/17.09.2019

SEARCHES FOR SQUARKS AND GLUINOS WITH LEPTON

- Searches for squarks and gluinos in events with jets and either 2 same <u>CONF-2019-015</u> sign leptons or at least 3 leptons
- Wide range of signal models (including R-parity violating scenarios):

• **Final state** contains 2 same sign leptons (or at least 3), jets and large E_T^{miss} (not for R-parity violating scenarios)

Five **SRs** are defined using various discriminating variables such as:

			_			
SR	n_ℓ	n _b	nj	$E_{\rm T}^{\rm miss}$ [GeV]	$m_{\rm eff}$ [GeV]	$E_{\rm T}^{\rm miss}/m_{\rm eff}$
Rpv2L	$\geq 2 \left(\ell^{\pm} \ell^{\pm} \right)$	≥ 0	$\geq 6 (p_{\mathrm{T}} > 40 \mathrm{GeV})$	_	> 2600	_
Rpc2L0b	$\geq 2 \left(\ell^{\pm} \ell^{\pm} \right)$	= 0	$\geq 6 (p_{\mathrm{T}} > 40 \mathrm{GeV})$	> 200	> 1000	> 0.2
Rpc2L1b	$\geq 2 \left(\ell^{\pm} \ell^{\pm} \right)$	≥ 1	$\geq 6 (p_{\mathrm{T}} > 40 \mathrm{GeV})$	_	_	> 0.25
Rpc2L2b	$\geq 2 \left(\ell^{\pm} \ell^{\pm} \right)$	≥ 2	$\geq 6 (p_{\rm T} > 25 {\rm GeV})$	> 300	> 1400	> 0.14
Rpc3LSS1b	$\geq 3 \left(\ell^{\pm} \ell^{\pm} \ell^{\pm} \right)$	≥ 1	no cut but veto $81 \text{ GeV} < m_{e^{\pm}e^{\pm}} < 101 \text{ GeV} > 0.$			

 $n_l, n_b, n_j, E_T^{miss}, m_{eff}, m_{eff}/E_T^{miss}$

PIC/17.09.2019

SEARCHES FOR SQUARKS AND GLUINOS WITH LEPTONS

- Searches for squarks and gluinos in events with jets and either 2 same sign SUS-19-008 leptons or at least 3 leptons
- Various signal models (including R-parity violating scenarios):

many others. See backup slides!

Final state contains 2 same sign leptons (or at least 3), jets and large E_T^{miss} (not for R-parity violating scenarios)

Five sets of **SRs** are defined using different discriminating variables such as: $n_l, p_T(l), n_j, n_b, E_T^{miss}$ and H_T

- 1. SSHH (high-high) exactly 2L with $p_T > 25$ GeV
- sensitive to particular 2. SSHL (high-low) - exactly 2L, one with $p_T > 25$ GeV and one with $p_T < 25$ GeV
- 3. SSLL (low-low) exactly 2L with $p_T < 25 \text{ GeV}$
- 4. LM (low E_T^{miss}) exactly 2L with p_T > 25 GeV and E_T^{miss} < 50 GeV
- 5. ML (multi-leptons) \geq 3L, at least one with $p_T > 25$ GeV

PIC/17.09.2019

FRE

SEARCHES FOR SQUARKS AND GLUINOS WITH LEPTONS

17

CONF-2019-015

Mass limits have reached ~ 1.6 TeV for low LSP masses

+ the interpretations of the other signal models in backup

SEARCHES FOR SQUARKS AND GLUINOS WITH LEPTONS

+ the interpretations of the other signal models in backup

PIC/17.09.2019

Searches for strongly interacting SUSY particles - Danijela Bogavac (IFAE-Barcelona)

19

SEARCHES FOR GLUINOS

SEARCH FOR TOP SQUARKS WITH Z BOSONS

• Search for top squark pair production in events with at least one Z boson

- Final state contains at least 3L (2L OS from Z decay and an additional lepton(s) from top decay), jets and large E_T^{miss}
- Two sets of **SRs** are defined using lepton kinematics, (b-)jet kinematics, E_T^{miss} and m_T :
- 1. SRA1(2) for small $\tilde{\chi}_2^0(\tilde{t}_2^0) \tilde{\chi}_1^0$ mass splittings
- 2. **SRB**₁₍₂₎ for large $\tilde{\chi}_2^0(\tilde{t}_2^0) \tilde{\chi}_1^0$ mass splittings
- Dominant backgrounds are tiz and multiboson production (estimated in the dedicated CRs) with additional contributions from fake and non-prompt leptons (FNP)

SEARCH FOR TOP SQUARKS WITH Z BOSONS

SEARCH FOR TOP SQUARKS IN THE 3-BODY DECAY MODE

9

- No excess over the SM prediction is observed
- Limits are set on masses of top squark and LSP using the multi-bin SRs \rightarrow 10 bins: •

 $NN_{bWN} \in [0.65^*, 0.7^*, 0.75^*, 0.8, 0.82, 0.84, 0.86, 0.88, 0.9, 0.92, 1]$

CONF-2019-017

SEARCH FOR TOP SQUARKS WITH A LEPTON

• Search for top squarks with a single lepton

Final state contains 1L, high jet multiplicity and large E_T^{miss}

25 GeV 1*l* not from top Observed **SRs** are designed using n_j , n_b , E_T^{miss} , M_{bl} (b-jet, l) Lost lepton 10^{4} $Z \rightarrow v \overline{v}$ Events / 3 either resolved or boosted hadronic top tagger 1l from top 10³ **Dominant backgrounds** estimated in CRs: tt, single top and W+jets (lost lepton) 10² W+jets (1 lepton) 10 $t\overline{t}$ (1 lepton) & $Z \rightarrow v\overline{v}$ 100 300 500 0 200 600 400 M_{/b} [GeV]

SUS-19-009

SEARCH FOR TOP SQUARKS WITH A LEPTON

SEARCH FOR BOTTOM SQUARKS WITH DECAYS TO HIGGS

Search for bottom squark pair production with Higgs bosons

arXiv:1908.03122

- Final state contains OL, high jet multiplicity with many of these jets originating from b-quarks and large E_T^{miss}
- Two mass hierarchy scenarios are considered: 1) $m(\tilde{\chi}_1^0) = 60 \text{ GeV}$ 2) $\Delta m(\tilde{\chi}_2^0, \tilde{\chi}_1^0) = 130 \text{ GeV}$

Three sets of non-orthogonal **SRs** are defined to target different mass hierarchies using various discriminating variables: n_j , n_b , $\Delta \phi(j_{1-4}, p_T^{miss})$, $\Delta \phi(j_1, p_T^{miss})$

either Higgs bosons reconstruct algorithms m_{eff} or the Object-based E_T^{miss} significance

PIC/17.09.2019

SEARCH FOR BOTTOM SQUARKS WITH DECAYS TO HIGGS

Dominant backgrounds estimated in the **CRs**:

- *tt* (SRA and SRB)
- $Z \rightarrow v\overline{v}$ and top-related processes (SRC) **Other**: $t\bar{t}$ +W/Z, $t\bar{t}$ +h, diboson, W+jets

ATLAS Preliminary

Expected Limit (±1 o_{exp})

Observed Limit (±1 of theory)

Kinematically Forbidden mc22 mb)

600

400

800

1200

1000

ATLAS 8 TeV, 20.3 fb⁻¹ (observed)

√s=13 TeV, 139 fb⁻¹, 95% CL

The background modelling is validated in orthogonal **VRs** defined with OL and different b-jet selections

No significant excess is observed beyond the SM expectation in the SRs

 $m(\widetilde{\chi}_2^0)$ [GeV]

1600

1400

1200

1000

800

600

400

200 200

FAE

SEARCHES FOR TOP AND BOTTOM SQUARKS

- The latest results of SUSY searches at the ATLAS and CMS experiments with the full Run 2 dataset have been presented
- Unfortunately, no SUSY particles have been found

- Many other searches are currently in progress, some of which hopefully give us hints for SUSY
- Stay tuned for more SUSY results!

THANK YOU FOR YOUR ATTENTION!

	MB-SSd	MB-GGd	MB-C
$N_{\rm j}$	≥ 2	≥ 4	≥ 2
$p_{\rm T}(j_1) \; [{\rm GeV}]$	> 200	> 200	> 600
$p_{\mathrm{T}}(j_{i=2,\ldots,N_{\mathrm{j_{min}}}}) \; [\mathrm{GeV}]$	> 100	> 100	> 50
$ \eta(j_{i=1,\ldots,N_{j_{\min}}}) $	< 2.0	< 2.0	< 2.8
$\Delta \phi(j_{1,2,(3)}, {m p}_{ m T}^{ m miss})$ min	> 0.8	> 0.4	> 0.4
$\Delta \phi(j_{i>3}, \boldsymbol{p}_{\mathrm{T}}^{\mathrm{miss}})$ _{min}	> 0.4	> 0.2	> 0.2
Aplanarity	-	> 0.04	-
$E_{\rm T}^{\rm miss} / \sqrt{H_{\rm T}} [{\rm GeV}^{1/2}]$	> 10	> 10	> 10
$m_{\rm eff} {\rm [GeV]}$	> 1000	> 1000	> 1600

	BDT-GGd1	BDT-GGd2	BDT-GGd3	BDT-GGd4		
$N_{ m j}$	≥ 4					
$\Delta \phi(j_{1,2,(3)}, oldsymbol{p}_{\mathrm{T}}^{\mathrm{miss}}) _{\mathrm{min}}$	≥ 0.4					
$\Delta \phi(j_{i>3}, p_{\mathrm{T}}^{\mathrm{miss}})$ _{min}	≥ 0.4					
$E_{\mathrm{T}}^{\mathrm{miss}}/m_{\mathrm{eff}}(Nj)$	≥ 0.2					
$m_{\mathrm{eff}} \mathrm{[GeV]}$	$\geq 1400 \qquad \geq 800$					
BDT score	≥ 0.97	≥ 0.94	≥ 0.94	≥ 0.87		
$\Delta m(ilde{g}, ilde{\chi}_1^0) \; [{ m GeV}]$	1600 - 1900	1000 - 1400	600 - 1000	200 - 600		

	BDT-GGo1	BDT-GGo2	BDT-GGo3	BDT-GGo4		
$N_{ m j}$	≥ 6			≥ 5		
$\Delta \phi(j_{1,2,(3)}, oldsymbol{p}_{ ext{T}}^{ ext{miss}}) _{ ext{min}}$		≥ 0.2				
$\Delta \phi(j_{i>3}, {\pmb p}_{ m T}^{ m miss})$ $_{ m min}$		≥ 0.2				
$E_{\mathrm{T}}^{\mathrm{miss}}/m_{\mathrm{eff}}(Nj)$	≥ 0.2					
$m_{\rm eff}~[{ m GeV}]$	≥ 1400		≥ 8	800		
BDT score	≥ 0.96	≥ 0.87	≥ 0.92	≥ 0.84		
$\Delta m(\tilde{g}, \tilde{\chi}_1^0) \; [{ m GeV}]$	1400 - 2000	1200 - 1400	600 - 1000	200 - 400		

PIC/17.09.2019

Searches for strongly interacting SUSY particles - Danijela Bogavac (IFAE-Barcelona)

	BDT	regions				
Signal Region	$\operatorname{GGd1}$	m GGd2	GGd3	$\mathbf{GGd4}$		
	Fitted background events					
Diboson	3.0 ± 0.9	4.9 ± 1.4	21 ± 5	26 ± 7		
Z/γ^* +jets	20 ± 4	33 ± 5	139 ± 14	180 ± 18		
W+jets	7.0 ± 2.6	13.2 ± 3.5	48 ± 8	52 ± 9		
$t\bar{t}(+\mathrm{EW}) + \mathrm{single top}$	$0.1\substack{+0.3 \\ -0.1}$	$0.6\substack{+0.8\\-0.6}$	16 ± 5	39 ± 11		
Multi-jet	$0.1^{+0.1}_{-0.1}$	$0.1^{+0.1}_{-0.1}$	$0.1\substack{+0.1 \\ -0.1}$	$0.1\substack{+0.1\-0.1}$		
Total bkg (pre-fit)	29	56	253	348		
Total bkg	30 ± 5	52 ± 6	223 ± 17	298 ± 23		
Observed	34	68	227	291		
$\langle \epsilon \sigma \rangle_{obs}^{95}$ [fb]	0.13	0.25	0.33	0.36		
S_{obs}^{95}	19	34	46	50		
S_{exp}^{95}	16^{+6}_{-5}	22^{+8}_{-5}	43^{+17}_{-12}	54^{+20}_{-15}		
p_0 (Z)	0.30~(0.52)	0.05(1.60)	0.44~(0.15)	$0.50\ (0.00)$		
Signal Region	GGo1	GGo2	GGo3	GGo4		
	Fitted back	ground events	3			
Diboson	0.6 ± 0.2	2.2 ± 0.6	6.6 ± 2.2	6.8 ± 2.1		
Z/γ^* +jets	3.8 ± 1.3	10.9 ± 1.9	35 ± 6	39 ± 7		
W+jets	0.9 ± 0.5	3.8 ± 1.3	16 ± 4	27 ± 6		
$t\bar{t}(+\mathrm{EW}) + \mathrm{single top}$	0.2 ± 0.2	1.3 ± 0.8	28 ± 6	85 ± 14		
Multi-jet	—	—	$0.1\substack{+0.1 \\ -0.1}$	$0.5\substack{+0.5 \\ -0.5}$		
Total bkg (pre-fit)	7	25	111	178		
Total bkg	5.5 ± 1.5	18.3 ± 2.4	85 ± 9	159 ± 16		
Observed	6	25	80	135		
$\langle \epsilon \sigma \rangle_{obs}^{95}$ [fb]	0.05	0.12	0.16	0.18		
S_{obs}^{95}	7	17	22	25		
S_{exp}^{95}	$6.6^{+2.5}_{-1.8}$	11^{+5}_{-2}	25^{+10}_{-7}	37^{+14}_{-10}		
$ p_0 (\mathbf{Z})$	$0.41 \ (0.22)$	0.10(1.28)	$0.50 \ (0.00)$	$0.50 \ (0.00)$		

Inclusive

<i>H</i> _T range [GeV]	Jet multiplicities	M _{T2} binning [GeV]		
[250,450)	2 - 3j, 0b	[200, 300, 400, ∞)		
	2 – 3j, 1b	[200,300,400,∞)		
	2 — 3j, 2b	[200,300,400,∞)		
	4 – 6j, 0b	[200,300,400,∞)		
	4 – 6j, 1b	[200, 300, 400, ∞)	Source	Range [%]
	4 - 6j, 2b	$[200, 300, 400, \infty)$	Integrated luminosity	2.3-2.5
	≥ 7 j, Ub > 7i, 1b	$[200, 300, 500, \infty)$	Limited size of MC samples	1 100
	≥ 7 , 10 > 7i 2h	$[200, 300, \infty)$	Linited Size of MC Samples	1-100
	2 - 6i > 3b	$[200, 300, 400, \infty)$	Renormalization and factorization scales	5
	$\geq 7j, \geq 3b$	[200, 300, ∞)	ISR modeling	0–30
[450, 575)	2 – 3j, 0b	[200, 300, 400, 500, ∞)	b tagging efficiency, heavy flavors	0-40
	2 – 3j, 1b	$[200, 300, 400, 500, \infty)$	b to going officiency light flavors	0 20
	2 – 3j, 2b	$[200, 300, 400, 500, \infty)$	b tagging eniciency, light havors	0-20
	4 – 6j, 0b	$[200, 300, 400, 500, \infty)$	Lepton efficiency	0–20
	4 - 6j, 1b	$[200, 300, 400, 500, \infty)$	let energy scale	5
	4 - 6j, 2b	$[200, 300, 400, 500, \infty)$	$\mathbf{F} \mathbf{i} \mathbf{i} \mathbf{j} \mathbf{k} \mathbf{miss} 1 \mathbf{i}$	
	≥ 7 j, 0b	$[200, 300, 400, \infty)$	Fast simulation $p_{\rm T}^{\rm mass}$ modeling	0-5
	\geq /j, 1b > 7; 2h	$[200, 300, 400, \infty)$		
	≥ 7 , 20 2 Gi > 2 b	$[200, 300, 400, \infty)$		
	$2 - 6j, \ge 30$ > 7i > 3b	$[200, 300, 400, 500, \infty)$		
[575, 1200)	$\frac{2}{2}$, $\frac{2}{3}$, $\frac{2}{3}$, $\frac{2}{3}$	[200, 300, 400, 500, 600, 700, 800, 900, 1]	$000, 1100, \infty$)	
[575, 1200]	2 - 3i 1b	[200, 300, 400, 600, 800, 100, 000, 100, 100, 100, 100, 1	$(000, 1100, \infty)$	
	2 - 3i, 2b	$[200, 300, 400, 600, 800, \infty)$		
	4 - 6i, 0b	[200, 300, 400, 500, 600, 700, 800, 900, 1	$000, 1100, \infty$)	
	4 - 6i, 1b	$[200, 300, 400, 600, 800, 1000, \infty)$,, ,	
	4 - 6j, 2b	$[200, 300, 400, 600, 800, \infty)$		
	$2-6j \ge 3b$	[200, 300, 400, 600, 800, ∞)		
	7 – 9j, 0b	[200, 300, 400, 600, 800, ∞)		
	7 — 9j, 1b	[200, 300, 400, 600, 800, ∞)		
	7 — 9j, 2b	$[200, 300, 400, 600, 800, \infty)$		
	7 — 9j, 3b	$[200, 300, 400, 600, \infty)$		
	$7-9j$, $\geq 4b$	[200, 300, 400, ∞)		
	\geq 10j, 0b	[200,300,500,∞)		
	\geq 10j, 1b	[200, 300, 500, ∞)		
	\geq 10j, 2b	[200, 300, 500, ∞)		
	\geq 10j, 3b	[200, 300, ∞)		
	≥ 10 j, ≥ 4 b	$[200,\infty)$		

36

SEARCHES FOR SQUARKS AND GLUINOS WITH LEPTONS

PIC/17.09.2019

Searches for strongly interacting SUSY particles - Danijela Bogavac (IFAE-Barcelona)

39

FAE

SEARCHES FOR SQUARKS AND GLUINOS WITH LEPTONS

40

IFA

SEARCHES FOR SQUARKS AND GLUINOS WITH 'ONS F

PIC/17.09.2019

41

AA R

ATLAS EXPERIMENT

SEARCH FOR TOP SQUARKS WITH Z BOSONS

Requirement / Region	$\mathrm{SR}_{\mathrm{1A}}$	$\mathrm{SR}_{\mathrm{1B}}$	$\mathrm{SR}_{2\mathrm{A}}$	$\mathrm{SR}_{\mathrm{2B}}$
Third leading lepton $p_{\rm T}$ [GeV]	> 20	> 20	< 20	< 60
$n_{\rm jets} \ (p_{\rm T} > 30 {\rm ~GeV})$	≥ 4	≥ 5	≥ 3	≥ 3
$n_{b-\text{tagged jets}} \ (p_{\text{T}} > 30 \text{ GeV})$	≥ 1	≥ 1	—	≥ 1
Leading jet $p_{\rm T}$ [GeV]	_	—	> 150	_
Leading <i>b</i> -tagged jet $p_{\rm T}$ [GeV]	_	> 100	_	_
$E_{\rm T}^{\rm miss}$ [GeV]	> 250	> 150	> 200	> 350
$p_{\mathrm{T}}^{\ell\ell} \mathrm{[GeV]}$	_	> 150	< 50	> 150
$m_{\mathrm{T2}}^{3\ell} \; [\mathrm{GeV}]$	> 100	_	_	

	SR _{1A}	SR _{1B}	SR _{2A}	SR _{2B}
Total systematic uncertainty (%)	13	13	29	15
Diboson theoretical uncertainties (%)	2	3	11	5
$t\bar{t}Z$ theoretical uncertainties (%)	3	6	4	5
Other theoretical uncertainties (%)	6	9	2	9
MC and FNP statistical uncertainties (%)	6	<1	14	7
Diboson fitted normalisation (%)	2	3	11	6
$t\bar{t}Z$ fitted normalisation (%)	5	9	2	7
Fake/non-prompt leptons efficiency (%)	4	<1	14	2
Jet energy resolution (%)	4	3	2	2
Jet energy scale (%)	1	4	<1	1
b-tagging (%)	3	5	1	5

.

	SR _{1A}	SR _{1B}	SR _{2A}	SR _{2B}
Observed events	3	14	3	6
Total (post-fit) SM events	5.4 ± 0.7	12.8 ± 1.6	5.7 ± 1.7	5.4 ± 0.8
Post-fit, multi-boson	0.50 ± 0.22	1.5 ± 0.5	2.7 ± 1.0	1.5 ± 0.6
Post-fit, $t\bar{t}Z$	2.5 ± 0.5	8.7 ± 1.6	0.73 ± 0.29	2.1 ± 0.5
Fake or non-prompt leptons	0.74 ± 0.24	0.04 ± 0.02	1.8 ± 1.1	0.65 ± 0.11
tZ, tWZ	0.9 ± 0.4	2.2 ± 1.2	0.19 ± 0.11	1.0 ± 0.5
Others	0.78 ± 0.17	0.37 ± 0.08	0.21 ± 0.06	0.16 ± 0.03
Pre-fit, multi-boson	0.59 ± 0.18	1.8 ± 0.5	3.2 ± 0.9	1.8 ± 0.4
Pre-fit, $t\bar{t}Z$	2.6 ± 0.4	8.9 ± 1.0	0.76 ± 0.27	2.2 ± 0.4
$\overline{S_{\rm obs}^{95}}$	4.6	10.9	4.9	7.0
$S_{\rm exp}^{95}$	$6.1^{+2.5}_{-1.5}$	$9.4^{+3.3}_{-1.9}$	$6.2^{+2.5}_{-1.7}$	$6.5^{+2.5}_{-1.8}$
$\sigma_{\rm vis}$ [fb]	0.03	0.08	0.03	0.05
p_0	0.5	0.37	0.50	0.38

SEARCH FOR TOP SQUARKS WITH Z BOSONS

SEARCH FOR TOP SQUARKS IN THE 3-BODY DECAY MODE

Input variable	Description
$E_{\rm T}^{\rm miss}$	Missing transverse energy
$\phi(ar{p}_{ ext{T}}^{ ext{miss}})$	Azimuthal angle of the $\vec{p}_{\rm T}^{\rm miss}$
$m_{ m T}$	Transverse mass
$\Delta \phi(\ell, \vec{p}_{\mathrm{T}}^{\mathrm{miss}})$	Azimuthal angle between $\vec{p}_{\mathrm{T}}^{\mathrm{miss}}$ and lepton
$m_{ m bl}$	Invariant mass of leading b-tagged jet and lepton
$p_{\mathrm{T}}^{b_{jet}}$	Transverse momentum of the leading b-tagged jet
$n_{ m jet}$	Jet multiplicity
$n_{b-\mathrm{tag}}$	Number of <i>b</i> -tagged jets @ 77%
$p_{\mathrm{T}}(\ell)$	Transverse momentum of lepton
$\eta(\ell)$	Pseupdorapidity of lepton
$\phi(\ell)$	Azimuthal angle of lepton
$E(\ell)$	Energy of lepton

Architecture	Parameter set
Number of hidden layers	1
Neurons per hidden layer	128
Activation function	leaky relu ($\epsilon = 0.1$) [128]
Learning rate	10^{-3} [127]
Regularisation	$L2 \ (\lambda = 10^{-2}) \ [123]$
Weight initialisation	Glorot normal [129]
Batch size	$32 \ [123]$
Batch normalisation [130]	Yes

.

Label	$N_{ m J}$	t _{mod}	$M_{\ell b}$	top tagging	$E_{\rm T}^{\rm miss}$ bins
			[GeV]	category	[GeV]
A0		> 10	< 175	—	$[600, 750, +\infty]$
A1	2_3			U	[350, 450, 600]
A2	2-0	<u>~</u> 10		Μ	[250, 600]
B			≥ 175	_	$[250, 450, 700, +\infty]$
C		< 0	< 175	_	$[350, 450, 550, 650, 800, +\infty]$
D		< 0	≥ 175	—	$[250, 350, 450, 600, +\infty]$
EO				—	$[450, 600, +\infty]$
E1			/ 175	U	[250, 350, 450]
E2		0–10	< 175	Μ	[250, 350, 450]
E3	$> \Lambda$			R	[250, 350, 450]
F	<u> </u>		≥ 175	—	$[250, 350, 450, +\infty]$
G0				—	$[450, 550, 750, +\infty]$
G1			/ 175	U	[250, 350, 450]
G2		≥ 10	< 175	Μ	[250, 350, 450]
G3				R	[250, 350, 450]
H			≥ 175	_	$[250, 500, +\infty]$

SEARCH FOR BOTTOM SQUARKS WITH DECAYS TO HIGGS

> 1

IFAE

					Variable	SRB
Variable	SRA	SRA-L	SRA-M	SRA-H	$N_{\rm leptons}$ (baseline)	= 0
$N_{\rm leptons}$ (baseline)	= 0		= 0		$N_{ m iets}$	> 5
$N_{ m jets}$	≥ 6		≥ 6		\mathcal{N}	> 1
$N_{ m b-jets}$	≥ 4		≥ 4		¹ v b-jets	<u>~</u> 4
$E_{\rm T}^{\rm miss}$ [GeV]	> 350		> 350		$E_{\rm T}^{\rm miss}$ [GeV]	> 350
$\min \Delta \phi(\text{jet}_{1-4}, \mathbf{p}_{\text{T}}^{\text{miss}}) \text{ [rad]}$	> 0.4		> 0.4		$\frac{1}{1} = \frac{1}{1} = \frac{1}{1}$	> 0.4
au veto	Yes		Yes		$\min \Delta \phi(\text{jet}_{1-4}, \mathbf{p}_{\text{T}})$ [rad]	> 0.4
$p_{\rm T}(b_1) ~[{\rm GeV}]$	> 200		> 200		au veto	Yes
$\Delta R_{ m max}(b,b)$	į 2.5		į 2.5		$(h h) = [O \cdot V]$	
$\Delta R_{\max-\min}(b,b)$	2.5		2.5		$m(n_{\text{cand1}}, n_{\text{cand2}})_{\text{avg}} [\text{GeV}]$	$\in [10, 10]$
$m(h_{\rm cand}) [{\rm GeV}]$	> 80		> 80		leading iet not <i>b</i> -tagged	Yes
$m_{\rm eff} [{ m TeV}]$	> 1.0	$\in [1.0, 1.5]$	$\in [1.5, 2.0]$	> 2.0	(\cdot) [O V]	200 200
					$p_{\rm T}(j_1)$ [GeV]	> 350
					$ \Delta \phi(j_1, E_{\mathrm{T}}^{\mathrm{miss}}) \text{ [rad]}$	> 2.8

Variable	SRC	SRC22	SRC24	SRC26	SRC28		
$N_{\rm leptons}$ (baseline)	= 0	= 0					
$N_{ m jets}$	≥ 4	≥ 4					
$N_{ m b-jets}$	≥ 3	≥ 3					
$E_{\rm T}^{\rm miss} [{\rm GeV}]$	> 250	> 250					
$\min \Delta \phi(\text{jet}_{1-4}, \mathbf{p}_{T}^{\text{miss}}) \text{ [rad]}$	> 0.4	> 0.4					
${\mathcal S}$	> 22	$\in [22, 24]$	$\in [24, 26]$	$\in [26, 28]$	> 28		

 $m_{\rm eff}$ [TeV]

PIC/17.09.2019

46