The Collective Behavior at the Small Collision Systems Measured by the PHENIX Experiment at RHIC

Seyoung Han for the PHENIX collaboration Korea University, Seoul

Collective behavior in heavy ion collision

- impact parameter (b)
- Nonflow : Non-collective originated correlation also exists; jet, particle decays, EP decorrelations, HBT etc.

Near-side long-range ridge structure

medium.

Collective dynamics of the small systems

- What is the smallest system size that can create a QGP?
- What is the role of the initial geometry?
- How important are the contributions from the initial state and the hadronization process?
- How do we quantify the long range ridge structure?
- What is the physics behind?

QGP-originated elliptic flow?

Considerable size of near-side long-range ridge structure measured at p+p 7TeV(CMS) at the very high multiplicity events.

√s _{NN} [GeV]	U+U	Au+Au	Cu+Au	Cu+Cu	³ He+Au	d+Au	p+Au	p+p	
510	Nature Physics 15 , 214-220 (2019)								
200	\checkmark	\checkmark	V	~	~	~	~	~	
62.4		\checkmark		 V 		~	PRL 120 , 06	2302 (2018)	
39		\checkmark				~	PRC 96 , 064	4905 (2017) [°]	
19.6		\checkmark		V		~			
 In small collision systems, can we find some similar features of the heavy ion collisions case? 					2.0 1.5			- min-bias 0-20 20-40 40-60 60-80	
 Do these formation 	features 1?	indicate Q)GP	F(ŋ	0.5-	Au	d		

-0.5 PRC 97, 034901 (2018)

2

small systems F(ŋ) of wounded quark model using PHOBOS d+Au 200GeV⁷

present understanding of the QGP?

Collision energy gets to be smaller by a factor of about ~10

 $dN_{ch}/d\eta$ decreases by a factor of ~3

d+Au Beam Energy Scan : v_2 vs η

Larger v_2 in Au-going direction, but this asymmetry becomes smaller in lower energies. d-going, $\eta > 0$

- 3 energies have similar size of v₂
- AMPT $v_2^{\{EP\}}$ describes the data quite well in all three collision energies with small non-flow contribution.

Au-going, η<0

- v₂ decreasing at the lower energy
- AMPT $v_2^{(EP)}$ described data points well, but tends to overshoot in lower energies.

d+Au Beam Energy Scan : v_2 vs η

Nonflow is not additive!

- 3 energies have similar size of v_2
- AMPT $v_2^{(EP)}$ describes the data quite well in all three collision energies with small non-flow contribution.

Au-going, $\eta < 0$

- v_2 decreasing at the lower energy
- AMPT $v_2^{(EP)}$ described data points well, but tends to overshoot in lower energies.

d+Au v_2 and the scaling $dN_{ch}/d\eta$

Energy gets to be smaller

• One interesting feature of v_2 and the $dN_{ch}/d\eta_{12}$

v₂ vs. centrality

v₂ increases: low multiplicity

-As the collisions become more peripheral.

-As the collision energy decreases.

AMPT predicts

-v₂^{PartonP} decrease as centrality -At lower p_T, two curves more in agreement.

-At high p_T , v_2^{EP} is significantly larger than v_2^{ParonP} where non-flow effects may dominant.

There would be additional nonflow effect which are not included.

√s _{nn} [GeV]	U+U	Au+Au	Cu+Au	Cu+Cu	³ He+Au	d+Au	p+Au	p+p	
510	Nature Physics 15 , 214-220 (2019)								
200	\checkmark	\checkmark	V	~	~	~	~	~	
62.4		\checkmark		V		~		~	
39		\checkmark				~			
19.6		\checkmark		V		~			
What	ah				2.0	1	· · ·	min-bias	

small systems?

• System-size, and initial geometry dependence for small systems

Collision system size dependence

System size gets to be larger

Collision system size dependence

PRL 121, 222301 (2018)

v_2 and the scaling $dN_{ch}/d\eta$

• Different systems are also shown similar shape especially at the mid-forward rapidity

Nature Phys. 15, 214 (2019)

Initial geometry and the v_n

 $v_2[p+Au] < v_2[d+Au] ≈ v_2[^3He+Au]$ ε₂[p+Au] < ε₂[d+Au] ≈ ε₂[^3He+Au]

 v_3 [p+Au] ≈ v_3 [d+Au] < v_3 [³He+Au] ε₃[p+Au] ≈ ε₃[d+Au] < ε₃[³He+Au]

Initial geometry dependence of v_2 is studied using different collision systems.

The hierarchy of v_2 and v_3 consistent with that of ϵ_n .

Summary

- Collective-like behavior was observed in small systems by the PHENIX experiment.
 - Measured v_n are well described by viscous hydro model.
 - $dN_{ch}/d\eta$ is described by the wounded quark model.
 - Confirmed initial geometry effect in the medium formed in small systems (p/d/³He + Au)
 - 3D hydrodynamics reasonably well describe the rapidity(η) dependence of the v_2 .
 - Measured centrality dependence but it is not described by AMPT.
- Nonflow contribution needs to be studied for the better understanding of small collision systems.

THANK YOU

BACKUP

Central arm :

charged particle measurement, particle identification

Forward-backward arm :

charged particle measurement, triggering, event-plane determination

d+Au Beam Energy Scan : v_2 vs. p_T

d+Au Beam Energy Scan : v_2 vs. p_T

PRL 121, 222301 (2018)

v_2 and the scaling $dN_{ch}/d\eta$

• Different systems are also shown similar shape especially at the mid-forward rapidity

System size gets to be larger

3D hydrodynamics estimates only the flow effect.

p+Au v₂ vs. centrality

One North, One South = Black

v_2 scaling

One interesting feature of v₂ and the dN_{ch}/dη
 – Shapes are similar each other!

v_2 scaling

One interesting feature of v₂ and the dN_{ch}/dη
 – Shapes are similar each other!

System size gets to be larger

3D hydrodynamics estimates only the flow effect.

Wounded model

Another candidate of QGP evidence!

• Inelastic collision: What is actually crashed?

 $\frac{dN_{ch}}{d\eta} = \omega_L F(\eta) + \omega_R F(-\eta)$

 $F(\eta)$ = Wounded source emission function ω = average number of wounded particles

- Asymmetric collision is the perfect circumstance to study the wounded model
- Scaling behaviors of small/ large collision systems can be observed

Quark / Nucleon

Wounded model

Another candidate of QGP evidence!

• Inelastic collision: What is actually crashed?

$$F(\eta) = \frac{1}{2} \left(\frac{N(\eta) + N(-\eta)}{\omega_L + \omega_R} + \frac{N(\eta) - N(-\eta)}{\omega_L - \omega_R} \right)$$

 $F(\eta)$ = Wounded source emission function ω = average number of wounded particles

- Asymmetric collision is the perfect circumstance to study the wounded model
- Scaling behaviors of small/ large collision systems can be observed

Quark / Nucleon

PSEUDO-RAPIDITY DEPENDENCE OF HADRON PRODUCTION

Analysis method

Event-plane method

- Define event-plane using FVTX-S <u>clusters</u>(hits)
- Calculate resolution of eventplane(Ψ_2) with 3 detectors; CNT,FVTS,BBCS

$$v_2^{CNT} = \frac{\left\langle \cos 2(\phi^{CNT} - \Psi_2) \right\rangle}{\operatorname{Res}(\Psi_2)}$$

2-particle correlation

- Calculate correlation of two tracks $\Delta \phi$ in two different detectors
- Normalize with background correlations
- Fourier expansion fitting and coefficient of $\cos 2\phi$ modulation c_2 ,

Expanded pseudo-rapidity

The new PHENIX results are in **good agreement** with the previous PHENIX results (Run 8) at the mid-rapidity.

Expanded pseudo-rapidity

Expanded pseudo-rapidity

The new PHENIX results are in **good agreement** with the previous PHENIX results (Run 8) at the mid-rapidity.

Also the $dN_{ch}/d\eta$ measured at the wider range of rapidity by using the FVTX.

