Z Brandeis University

Status of the LZ dark matter search and projected sensitivity

Jui-Jen (Ryan) Wang On behalf of LZ collaboration PIC 2019 Taipei, Taiwan

PIC 2019 @ Taipei

- 370 kg liquid xenon Time Projection Chamber (TPC).
- Was located at Sanford Underground Laboratory, SD USA (2013-2015)

- 12 kg liquid xenon Time Projection Chamber (TPC)
- Pioneered WIMP search with 2phase xenon
- Was located at the Boulby Underground Laboratory, UK (2006-2011)

7 tonne (5.6 tonne fiducial) liquid xenon time-projection chamber

T

1

JUI-JEN (Ryan) Wang

Gadolinium-loaded

liquid scintillator (~17 tonnes)

7 tonne (5.6 tonne fiducial) liquid xenon time-projection chamber

Liquid xenon heat exchanger

494 PMTs (3") in TPC

Additional 131 xenon "skin" PMTs

JUI-JEN (Ryan) Wang

uniti titu

7 tonne (5.6 tonne fiducial) liquid xenon time-projection chamber

Liquid xenon heat exchanger

Gadolinium-loaded liquid scintillator (~17 tonnes) 120 Outer detector PMTs (8" R5912) 494 PMTs (3") in TPC Additional 131 xenon "skin" PMTs

JUI-JEN (Ryan) Wang

7 tonne (5.6 tonne fiducial) liquid xenon time-projection Gadolinium-loaded chamber liquid scintillator (~17 tonnes) 120 Outer detector PMTs (8" R5912) uning an unit Liquid xenon heat exchanger 0 Neutron 494 PMTs (3") in TPC beampipes Additional 131 xenon "skin" PMTs PIC 2019 @ Taipei 9/18/2019 8 JUI-JEN (Ryan) Wang

- Previously was a deep underground gold mine (Homestake mine, 1878 2001).
- Famous Homestake experiment performed by Raymond Davis in 1960s, has long history related to particle physics.
- LZ located at Davis Campus (~ 1.5 km underground, 4300 mwe), also the future home of DUNE

- Previously was a deep underground gold mine (Homesta
- Famous Homestake experiment performed by Raymond
 long history related to particle physics.
- LZ located at Davis Campus (~ 1.5 km underground, 430 home of DUNE

Time Projection Chamber

- Incident particle impinges on the target atoms to either ionize or excited the atoms.
- Excited atoms forms the diatomic molecule (dimers) after went through the three-body collision with neutral atom and subsequently emit the primary scintillation light (S1).
- Electrons coming out of ionized atoms are drifted to the gas phase and emit the scintillation light (S2).
- High purity xenon target ensures the long electron drift time.
- Electronic recoil backgrounds distinguished by ratio of charge(S2)/light(S1) signal.
- 3D imaging achieved by determine the timing of S1 and S2 (Z position) and light pattern (X-Y position)

Time Projection Chamber

- Incident particle impinge on the target atoms to either ionize or excite the atoms.
- Excited atoms forms the diatomic molecule (dimers) after undergoing the three-body collision with neutral atom and subsequently emit the primary scintillation light (S1).
- Electrons coming out of ionized atoms are drifted to the gas phase and emit the scintillation light (S2).
- High purity xenon target ensures the long electron drift time.
- Electronic recoil backgrounds distinguished by ratio of charge(S2)/light(S1) signal.
- 3D imaging achieved by determine the timing of S1 and S2 (Z position) and light pattern (X-Y position)

T

JUI-JEN (Ryan) Wang

PIC 2019 @ Taipei

2

At 200 keV threshold, 500 μs window, the OD is only 3.5%

inefficient! \rightarrow 96.5 % of neutrons that single scatter within the region of interest in

https://arxiv.org/abs/1703.09144

- WIMP-like nuclear recoil backgrounds in 6-30 keV region of interest.
- Fiducial would be reduced from 5.6 to 3.2 tonnes without outer detector.
- Maybe possible to go to 100 keV threshold, reaching < 3% inefficiency.

- Cosmological background
 - Rock gamma
 - Neutrino events
- Internal background
 - Charcoal chromatography to remove ⁸⁵Kr and ³⁹Ar
 - Dedicated facility at SLAC
 - Rn emanation screen campaign
 - Four Rn screening site
 - Target Rn activity = $2 \mu Bq/kg$
 - Total ~ 0.001 x Banana in 10 tonnes of Xenon
 - Rn daughter (plate-out)
 - TPC assembly in Rn-reduced cleanroom to limit daughter recoils on surface
 - Rn-daughter plate on TPC walls < 0.5 mBq/m³

Background Source	ER (cts)	NR (cts)
Detector Components	9	0.07
Surface Contamination	40	0.39
Laboratory and Cosmogenics	5	0.06
Xenon Contaminants	819	0
222Rn	681	0
220Rn	111	0
natKr (0.015 ppt g/g)	24	0
natAr (0.45 ppb g/g)	3	0
Physics	322	0.51
136Xe 2vββ	67	0
Solar neutrinos (pp+7Be+13N)	255	0
Diffuse supernova neutrinos	0	0.05
Atmospheric neutrinos	0	0.46
Total	1195	1.03
with 99.5% ER discrim., 50% NR eff.	5.97	0.51

- Cosmological background
 - Rock gamma
 - Neutrino events
- Internal background
 - Charcoal chromatography to remove ⁸⁵Kr and ³⁹Ar
 - Dedicated facility at SLAC
 - Rn emanation screen campaign
 - Four Rn screening site
 - Target Rn activity = $2 \mu Bq/kg$
 - Total ~ 0.001 x Banana in 10 tonnes of Xenon
 - Rn daughter (plate-out)
 - TPC assembly in Rn-reduced cleanroom to limit daughter recoils on surface
 - Rn-daughter plate on TPC walls < 0.5 mBq/m³

	ER (cts)	NR (cts)
	9	0.07
	40	0.39
Labo	5	0.06
	819	0
	681 111	0 0
Banana.	24 3	0 0
Physics	322	0.51
136Xe 2vββ Solar neutrinos (pp+7Be+13N) Diffuse supernova neutrinos Atmospheric neutrinos	67 255 0 0	0 0 0.05 0.46
otal	1195	1.03
vith 99.5% ER discrim., 50% NR eff.	5.97	0.51

Construction @ SURF

COW (Cryogen On Wheel)

- Circulation system has been constructed and tested underground.
- Preparation of OD construction is undergoing, 16 (17.5 total) tonnes Gd-LS is produced at Brookhaven Nat. Lab.
- Calibration system will be deployed later this year !

- TPC assembly is done !
 - Assembled in low radon clean room
 - System checkout indicate all system installed properly
 - TPC has been inserted into Inner cryo-vessel (ICV)
 - Final checkout is underway
 - Pumping ICV down in few weeks
 - Move to underground facility in Mid-Oct !

JUI-JEN (Ryan) Wang

Standard WIMPs analysis in LZ

arXiv: 1802.06039

- Nuclear recoil events can be separated by discrimination parameters (S2/S1).
- Thorough study on detector response through MC simulation.
- Mock data is being produced to understand the the performance and ready for first scientific data !

JUI-JEN (Ryan) Wang

PIC 2019 @ Taipei

21

9

Z Projected WIMP sensitivity (1000 live-days, 5.6 fiducial)

https://arxiv.org/abs/1802.06039 10^{-42} LZ sensitivity (1000 live days) — LUX (2017) Projected limit (90% CL one-sided) 10^{-43} - XENON1T (2017) SI WIMP-nucleon cross section [cm²] Ē $\pm 1\sigma$ expected PandaX-II (2017) $+2\sigma$ expected 10^{-44} 10^{-45} pMSSM11 (MasterCode, 2017) 10⁻⁴⁶ 10^{-47} 1 neutrino event Neutrino discovery limit (CE_VNS) 10^{-48} 10^{-49} 1.6 x 10⁻⁴⁸ cm² 1000 10 100 @ 40 GeV/c² WIMP mass $[GeV/c^2]$

JUI-JEN (Ryan) Wang

PIC 2019 @ Taipei

Discovery potential (1000 live-days, 5.6 fiducial)

JUI-JEN (Ryan) Wang

Z

- LZ is optimised for WIMP discovery
 - 7-tonne active mass + low energy threshold
 - Extensive radio-assay and surface cleanliness 0 -> BG control.
 - Near-hermetic active veto system suppresses remaining NR backgrounds. detector (TPC) has been assembled in Surface Ο
- Main detector (TPC) has been assembled in Surface Assembly Laboratory (SAL), will move to underground in Mid-Oct 2019.
- Cryogenic system is being installed and under test in underground.
- Various physics can be probed by LZ detector
 - Neutrinoless double beta decay 0
 - Electron recoil DM 0
 - Supernova neutrinos 0
 - Annual modulation signal 0
 - Inelastic DM 0
 - Momentum dependent DM 0
- Detector commissioning in ~ late spring 2020 !

https://arxiv.org/abs/1310.8327

JUI-JEN (Ryan) Wang

PIC 2019 @ Taipei

9/18/2019 24

TPC insertion complete @ SAL

I'm here !

JUI-JEN (Ryan) Wang

PIC 2019 @ Taipei

Backup Slides

- Internal source
 - ^{83m}Kr (beta, 41 keV)
 - ^{131m}Kr (gamma 9.4 keV)
 - ²²⁰Rn (alpha)
- Radioactive source
 - AmLi (alpha,n)
 - ²²Na (back to back 511 keV gamma)
- Photo-neutrons
 - ⁸⁸YBe (low-energy NR response)
- DD Generator
 - 2.4 MeV neutron (NR light and charge yields)
- Light sources
 - LED optical calibration

PIC 2019 @ Taipei

9/18/2019 27

Detector Response in Simulation

- Noble Element Simulation Technique (NEST) is a comprehensive model for explaining scintillation yield in liquid xenon.
 - No complicated models in different energy regime.
 - NEST is integrated into LZ simulation package which gives more realistic light yield and charge yield in the simulation.

NEST v2.0: B. Lenardo, K. Kazkaz, A. Manalaysay, J. Mock, M. Szydagis, and M. Tripathi, IEEE Trans. Nucl. Sci. 62, 3387 (2015), arXiv:1412.4417 [astroph.IM].

JUI-JEN (Ryan) Wang

28

9

JUI-JEN (Ryan) Wang

PIC 2019 @ Taipei

9/18/2019 29

JUI-JEN (Ryan) Wang

PIC 2019 @ Taipei

9/18/2019 30

Neutron Capture on Gd

- Thermal neutron capture cross sections : ¹⁵⁷Gd : 254,000 barns, ¹⁵⁵Gd : 61,000 barns
- After neutron capture, 3-4 gammas released with total energy of ~ 8 MeV.

2

- All vessels were made and molded at Reynolds.
- Four side vessels has been placed in the water tank by the end or last year.
- Six small tanks will be delivered to SURF this month.

JUI-JEN (Ryan) Wang

PIC 2019 @ Taipei

Gd-LS scintillator production

- BNL has started the mass production of Gd-LS since January 2019.
- Steadily producing Gd-LS at the rate of 3-4 batches (500 L for one batch) per week.
- Brandeis team has supported BNL on Gd-LS production
 - Summer undergrad student assisted the mixing system of Gd-LS.
 - I worked at BNL to build compton suppression system to monitor the background of Gd powder.
 - Working on attenuation length measurement of Gd-LS for QA/QC.

Outer detector PMT & support system

- Brandeis team led by Prof. Penning leads design, construction and commissioning of OD infrastructure.
- Installation is coming up.

OD PMT support system

JUI-JEN (Ryan) Wang

PIC 2019 @ Taipei

9/18/2019 39

OD PMT

- Shipping 120 PMT from Korea to Brandeis for final assembly.
- Two PMTs shipped to Brandeis last year to perform preliminary test in water barrel test stand (ODTS).
- Submerged into water for long period of time to characterize the behavior of PMT in the full system.
 - Various dark rate measurement carried out by ODTS .
 - LZ optical calibration system (OCS, credit to U. Liverpool) has been installed in ODTS at Brandeis.
 - Data taking with full LZ electronic chain.

AmLi at 700 mm, ODHG

Using gamma source to determine the energy scale of outer detector.

Sodium 22 at 700 mm, ODHG

²²Na is used to check the timing between the LS and skin.

305850

137.5

221.7

1400

- Using 2-fold coincidence due to the shorter data taking time (3-fold default).
- DD generator provide various neutron energy range

OD Optical Calibration System (OCS)

- Inject a known number of photons into the OD.
- Allows for a calibration of the OD PMTs over the full sensitive range, 100's to 1E6 of photons
- Consists of 40 fibres injection points in the OD,
 - 30 around the OD pointing towards the center, 10 azimuthal locations, 3 different heights.
 - 10 fibres pointing upward into the LS tanks.
- Monitor and calibrate output in real time with a single photodiode per channel as well as a rack mounted monitoring PMT.

https://arxiv.org/abs/1802.06039

- Counts/kg/day/keV in 5.6 tonne fiducial volume
- Rn is the main background source in TPC.
- Single scatter events with no veto signal