Precision Timing with the CMS MIP Timing Detector

Riccardo Paramatti

Univ. Sapienza and INFN Rome

on behalf of the CMS Collaboration

PIC 2019 - Taipei

Large Hadron Collider

ATLAS

LHCb

CMS

LHC / HL-LHC Plan

CMS Experiment at the LHC, CERN Data recorded: 2018-Apr-17 1:26:32.973824 GMT Run / Event / LS: 314475 / 10482774 / 11

CMS event display

Reconstruction of a run2 event in CMS

Spread in collision vertex position: ~5 cm

Number of collisions per bunch crossing (pile-up):

.....

- Phase I LHC: ~40 collisions
- High Luminosity LHC: 140-200 collisions

The HL-LHC challenge

- Up to 5x higher vertex density
- Optimal cut at 1 mm for track-vertex compatibility
- Vertex density > 1 mm⁻¹ means <u>pile-up contamination and event</u> reconstruction degradation

A Detector for MIP Timing

Approach: time tagging tracks with 30-50 ps resolution

- \circ 3D \rightarrow 4D vertex reconstruction
- time compatibility for track-vertex association
- Goal: reduce the actual Phase2 pile-up to the current Phase1 size by slicing the beam spot in time slices.

Design of the CMS MTD (Mip Timing Detector)

BTL: LYSO bars + SiPM readout:

- TK / ECAL interface: |η| < 1.45
- · Inner radius: 1148 mm (40 mm thick)
- Length: ±2.6 m along z
- Surface ~38 m²; 332k channels
- Fluence at 4 ab⁻¹: $2x10^{14} n_{eq}/cm^2$

ETL: Si with internal gain (LGAD):

- On the CE nose: 1.6 < $|\eta|$ < 3.0
- Radius: 315 < R < 1200 mm
- Position in z: ±3.0 m (45 mm thick)
- Surface ~14 m²; ~8.5M channels
- Fluence at 4 ab⁻¹: up to 2x10¹⁵ n_{ed}/cm²

Improvement in the physics performance with the MTD

- Reconstruction performance
 - Higher b-tagging efficiency.
 - Improvement in identification and isolation of photons and leptons.
 - Better rejection of fake jets due to pile-up
 - Better missing transverse momentum resolution
- Signal yield gain in many Higgs decay channels.
- Velocity measurement from TOF: π/K and K/p discrimination for low p_T hadrons.

Improvement in the physics performance with the MTD

Reconstruction performance

- Higher b-tagging efficiency.
- Improvement in identification and isolation of photons and leptons.
- Better rejection of fake jets due to pile-up
- Better missing transverse momentum resolution
- Signal yield gain in many Higgs decay channels.
- Velocity measurement from TOF: π/K and K/p discrimination for low p_T hadrons.

MTD barrel: sensor choice

LYSO:Ce crystal as scintillator

- Dense (> 7.1 g/cm^3)
- High light yield (40000 ph/MeV)
- Fast rise time O(100)ps and decay time ~40 ns
- Excellent radiation tolerance
- Silicon Photomultipliers as photo-detectors
 - Compact, insensitive to magnetic fields, fast
 - High dynamic range
 - Good radiation tolerance
 - Good Photon Detection Efficiency at 420 nm: 20-40%

BTL sensor performance (test beam results)

- LYSO (3x3x57 mm) bars read-out by SiPMs at both ends \rightarrow two different times (left and right) from each channel.
- Time is sensitive to the light propagation along bar.
- **Average time**: uniform response vs impact point, resolution improved and around 30 ps (matching requirements)
- **Time difference**: impact point along the bar with O(5 mm) resolution

- Time resolution will degrade with the LHC integrated luminosity.
- Main contribution from Dark Count Rate due to the SiPM defects induced by irradiation.
 - Mitigation cooling at -30 °C
 - Possible mitigation with SiPM annealing during downtime.
- Degradation from photostatistics partially mitigated by tuning bias voltage (and therefore PDE).
- Other contributions are stable in time, not affected by irradiation.

$$\sigma_{t}^{\text{BTL}} = \sigma_{t}^{\text{clock}} \oplus \sigma_{t}^{\text{digi}} \oplus \sigma_{t}^{\text{ele}} \oplus \sigma_{t}^{\text{phot}} \oplus \sigma_{t}^{\text{DCR}}$$

MTD Endcap: the radiation challenge

Higher and non-uniform radiation dose in the Endcap region.

- A factor 10 in the neutron flux comparing central barrel and outer Endcap
- A factor 30 in integrated radiation dose.
- SiPM radiation hardness is not adequate for such high doses.
- **Low Gain Avalanche Detectors (LGADs)** will be use in Endcap.
 - Internal gain: 10-30

				3000 fb^{-1}	
Region	$ \eta $	<i>r</i> (cm)	<i>z</i> (cm)	n_{eq}/cm^2	Dose (kGy)
Barrel	0.0	117	0 <	1.65×10^{14}	18
Barrel	1.15	117	170	1.80×10^{14}	25
Barrel	1.45	117	240	1.90×10^{14}	29
Endcap	1.6	127	304	1.5×10^{14}	19
Endcap	2.0	84	304	3.0×10^{14}	50
Endcap	2.5	50	304	7.5×10^{14}	170
Endcap	3.0	30	304 <	1.7×10^{15}	490

CMS

ETL sensor performance: radiation resistance

- The low gain is needed to allow segmentation and to keep the leakage current low. However the goal is to maintain a gain > 10 (resolution < 40 ps) until the end of HL-LHC.</p>
- The gain decreases due to the irradiation: tuning of bias voltage to compensate gain loss.

Gain as a function of bias voltage <u>for different neutron fluences</u> for sensors manufactured by Centro Nacional de Microelectronica (CNM), Hamamatsu Photonics (HPK) and Fondazione Bruno Kessler (FBK).

Conclusions

- This detector will bring a completely new capability to CMS: the ability to measure precisely the production time of MIPs.
- **Barrel Timing Layer**: LYSO:Ce crystals with SiPM readout.
- **Endcap Timing Layer**: LGADs optimized for precision timing.
- Full CMS physics program will benefit: PU reduction, lepton and photon reconstruction, increase of effective luminosity, etc.
- Successful test beam campaign in progress: results show good agreement with expectation.
- <u>A time resolution of 30 ps is achievable both in BTL and ETL;</u> will degrade to only 40-60 ps at the end of HL-LHC.
 - **MTD Technical Design Report** will be public in the next few weeks.

The CMS Collaboration

TECHNICIANS

ENGINEERS

PHYSICISTS

(1036 STUDENTS)

229

INSTITUTES

COUNTRIES & REGIONS

51

Crystal bar thickness leveling

- Purpose is to achieve the best uniformity in energy deposit along the z-direction (beam-direction)
 - Reduce the crystal thickness along eta to compensate for the slant thickness actually crossed by the MIP in LYSO crystals
 - Energy deposit in crystal ∝ slant thickness

Crystal technical specifications

LYSO Crystal parameter	Specification	Spread (RMS)
Light output / end	> 6000 ph/MeV	< 5%
LY(10ns)/LY(200ns)	> 20 %	< 3%
LY(200ns)/LY(2000ns)	>95~%	< 3%
Decay time	$< 43 \mathrm{ns}$	< 3%
Rise time	$< 200 \mathrm{ps}$	< 3%
Density	$> 7.1 \text{ g/cm}^3$	< 2%
Refractive index	1.82	-
Radiation tolerance		
Loss of light output	< 5%	< 5%
Induced absorption coeff., μ_{ind}	$< 3 { m m}^{-1}$	< 5%
Dimensions	Specification	Tolerance
Length [mm]	57.0	+0.00/-0.03
Width [mm]	3.12	+0.00/-0.03
Height [mm]	3.75 / 3.0 / 2.4	+0.00/-0.03
	0	

Layout of the Barrel Timing Layer

INFN

BTL Read-out Unit:

3x8 modules (768 channels)

BTL detector 72 trays: 2(z) x 36(φ) 332k channels

2 trays in z

Low Gain Avalanche Detectors

Figure 3.5: Cross-sectional diagrams comparing a standard silicon detector and a UFSD with an additional *p* implant providing the larger electric field needed for charge multiplication.

Layout of the Endcap Timing Layer

- 1: ETL Thermal Screen
- 2: Disk 1, Face 1
- 3: Disk 1 Support Plate
- 4: Disk 1, Face 2
- 5: ETL Mounting Bracket
- 6: Disk 2, Face 1
- 7: Disk 2 Support Plate
- 8: Disk 2, Face 2
- 9: HGCal Neutron Moderator
- 10: ETL Support Cone
- 11: Support cone insulation
- 12: HGCal Thermal Screen