Fabio Monti on behalf of the CMS Collaboration

Performance of the CMS Electromagnetic Calorimeter in LHC Run 2 PIC 2019 18th September

Outline

• The CMS Electromagnetic Calorimeter (ECAL) structure

• Importance of the ECAL

• Challenges faced during Run 2

• Achieved performance

The CMS ECAL

- Hermetic homogeneous calorimeter
- Between tracker and hadronic calorimeter

Endcaps

- 7324 crystals / endcap
- Vacuum Photo Triode readout
- 1.48 < |ŋ|< 3.00

PbWO₄ scintillating crystal

- High density
- Fast light emission
- Crystal dim. ~ em. shower
- 2.7(2.2) cm

Preshower

- Two Pb/Si planes
- 1.65 < |η|< 2.6
- See L. Phuc talk

Barrel

- 61200 crystals
- Avalanche photodiodes (APD) readout

З

• |η| < 1.48

The CMS ECAL

- Hermetic homogeneous calorimeter
- Between tracker and hadronic calorimeter
- Fast response
- Radiation tolerance
- Very good energy resolution
- Precise position resolution

Endcaps

- 7324 crystals / endcap
- Vacuum Photo Triode readout
- 1.48 < |η|< 3.00

PbWO₄ scintillating crystal

- High density
- Fast light emission
- Crystal dim. ~ em. shower
- 2.7(2.2) cm

Preshower

- Two Pb/Si planes
- 1.65 < |η|< 2.6
- See L. Phuc talk

Barrel

- 61200 crystals
- Avalanche photodiodes (APD) readout
- |η| < 1.48

Importance of the ECAL for CMS analysis

• Fundamental role in CMS Run 2 (2015-2018)

Precision measurements of the Higgs boson in the channels:

- > $H \rightarrow \gamma \gamma$
- > H \rightarrow ZZ \rightarrow eeµµ
- > H \rightarrow ZZ \rightarrow 4e

Searches for new phenomena: \succ Any final state with e, or γ

Search for high energy resonance decaying to di-electron

Challenges at LHC Run 2

- 2-4× increase of luminosity wrt Run 1
 - Data equivalent to 140 fb⁻¹ in 4 years of operation +
 - absorbed dose \rightarrow radiation damage +
 - simultaneous interactions per bunch crossing (pileup) +

CMS Integrated Luminosity, pp, $\sqrt{s} = 7$, 8, 13 TeV

CMS Average Pileup

Ingredients for energy reconstruction

Ingredients for energy reconstruction

New pulse shape reconstruction

- "Multifit" = signal fit accounting for out-of-time (OOT) pulses
 - \circ χ^2 minimization
 - Fit in-time pulse + up to 9 OOT pulses
 - Pulse shape extracted from data every ~week
- Mitigation of OOT pileup effect

Laser correction for transparency loss

- Radiation damage to ECAL crystals → transparency loss
- Laser monitoring system to measure and correct for that
 - 1 measure every 45 min
 - o crystal granularity

Laser pulse distributed to crystals through optical fibers

Dependence on luminosity, time, and η

Pedestals evolution

- Pedestal drift throughout Run 2
 - Short term variation: variation of working condition (temperature)
 - Long term variation: radiation damage on APD \rightarrow leakage current
- Significant effect on low energy signals, e.g. $\pi^0 \rightarrow \gamma \gamma$
 - Pedestal measured every ~40 min and promptly corrected

Inter-calibration

- Problem: channel-to-channel response spread
 - Variations of light yield, transparency, electronics gain
- Use reconstructed events to extract energy scale references
 - 1. Symmetry along ϕ of the average deposited energy from pp collisions
 - 2. Peak in m_{ee} for electrons from Z→ee decay (<u>new method</u>)
 - 3. Peak in $m_{\gamma\gamma}$ for photons from $\pi^0 \rightarrow \gamma\gamma$ decay
 - E/p ratio for electrons from W→ev decays

Fabio Monti - INFN and University Milano-Bicocca Fit of m_{vv} to extract π^0 peak

Inter-calibration results

 Ongoing re-calibration for optimized Run 2 data reconstruction

Calibration precision vs n

CMS Preliminary 2017

σ_{IC} combination

σις π`

σ_{IC} E/p

J_{IC} Zee

0.5

1.0

1.5

2.0

0.025

0.020

0.015

0.010

0.005

0.000

Inter-calibration precision

- One inter-calibration per year to exploit full statistic
- Residual mis-calibration < 0.5%
 in barrel and < 1% in endcaps

41.5 fb⁻¹ (13 TeV)

2.5

Crystal |n|

3.0

SuperCluster Inl

ECAL performance in Run 2 Very good energy resolution

~1% resolution on $m_{\gamma\gamma}$ for $H \rightarrow \gamma\gamma$ events

 Comparable to Run 1 performance despite larger PU and absorbed dose

Stable energy scale

Summary

• ECAL is a hermetic, homogeneous calorimeter able to provide very precise measurements of photons, and electrons energy

 In Run 2 increase of pileup and radiation damage required to optimize the strategies for reconstruction and calibration

- Stable performance throughout Run 2
 - Stable energy scale
 - Energy resolution of ~1.5-3% in barrel and of ~4% in endcaps
 - $H \rightarrow yy$ peak width comparable to Run 1

BACKUP

PbWO₄ crystal

- High density 8.28 g/cm³ ~ $2-4\times$ glass
- Radiation length = 0.92 cm
- Moliére radius = 2.2 cm
- 80% light emission in 25 ns
- Light yield ~ 100 ph/MeV
- Readout:

- $\circ~$ APD in barrel: 2 APD of 5×5 mm² / crystal with gain ~50×
- $\circ~$ VPT in endcaps: 1 VPD of ~280 mm² / crystal with gain ~8-10×

Clustering reconstruction with ECAL

- Material in front of ECAL: tracker + supports
 - Electron bremsstrahlung
 - Photon conversion
- Clustering algorithms
 - "supercluster" of energy deposits compatible with a single e/y shower
- Energy correction
 - for pileup, gaps between crystals, ...
 - <u>new</u> multivariate
 approach in Run 2

Pulse shape reconstruction details

Timing drift

Drift of electronics and of the pulse shapes during the data taking

- Re-calibrate timing and pulse shapes when drift > 200 ps
- ➤ Typical timescale ~ week

Laser correction details

LIGHT SOURCE & HIGH LEVEL DISTRIBUTION SYSTEM (Laser Barrack)

Pedestal vs noise evolution

- Long term pedestal evolution matches rather well to the noise increase related to the APD leakage current variation (radiation damage)
- No short term noise evolution are observed

