Physics in Collision 2019

XXXIX International Symposium on Physics in Collision

Department of Physics, National Taiwan University, Taipei, Taiwan | September 16-20, 2019

Atmospheric Neutrino

Kimihiro OKUMURA (Institute for Cosmic Ray Research, Univ. of Tokyo) okumura@icrr.u-tokyo.ac.jp

Atmospheric Neutrinos

- Decay products of secondaries by cosmic ray interactions with atmosphere. (v_µ: v_e ~ 2 : 1)
- Energy spectrum: power-law like (~E^{-3.7}), ranges from sub-GeV to ~100 TeV
- Cutoff by geomagnetic field below 1 GeV.
- Path length: distributed in O(10)km ~ 13,000km
 depending on zenith angle

GeV < E < TeV:

E > TeV:

Oscillation physics

- Mass hierarchy
- Tau appearance
- Sterile search

Test of SM in TeV

- Neutrino cross section
- Inelasticity
- Glashow resonance

Many physics opportunities

Neutrino Oscillation Physics

PMNS matrix:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

$$\begin{array}{c} \text{Atmospheric, LBL} \\ \Delta m_{32}^2 \simeq 2.4 \times 10^{-3} \text{eV}^2 \\ \sin^2 \theta_{23} = 0.4 \sim 0.6 \end{pmatrix} \begin{array}{c} \text{Reactor, LBL} \\ \sin^2 \theta_{23} = 0.4 \sim 0.6 \end{pmatrix}$$

Matter Effect and Mass Hierarchy

- Neutrino propagating in matter affected by additional potential of forward scattering with electron
- Effective mixing angle changes
- Resonance takes place in multi-GeV energy
- Only for neutrino for normal hierarchy

Effective mixing angle in matter:

$$\sin 2\theta_{13}^{M} = \frac{\sin 2\theta_{13}}{\sqrt{\left(\frac{A}{\Delta m_{32}^{2}} - \cos 2\theta_{13}\right)^{2} + \sin^{2} 2\theta_{13}}}$$
$$A = \pm 2\sqrt{2}G_{F}E_{\nu}n_{e}$$

Resonance condition:

 $A\sim \Delta m^2_{32}\cos 2\theta_{13} \quad \rightarrow \quad \theta^M_{13} \gg \theta_{13}$

Matter Effect and Mass Hierarchy

- Neutrino propagating in matter affected by additional potential of forward scattering with electron
- Effective mixing angle changes
- Resonance takes place in multi-GeV energy
- Only for anti-neutrino for inverted hierarchy

Effective mixing angle in matter:

$$\sin 2\theta_{13}^{M} = \frac{\sin 2\theta_{13}}{\sqrt{\left(\frac{A}{\Delta m_{32}^{2}} - \cos 2\theta_{13}\right)^{2} + \sin^{2} 2\theta_{13}}}$$
$$A = \pm 2\sqrt{2}G_{F}E_{\nu}n_{e}$$

Resonance condition:

 $A \sim \Delta m_{32}^2 \cos 2\theta_{13} \quad \rightarrow \quad \theta_{13}^M \gg \theta_{13}$

Super-Kamiokande Detector

- Water Cherenkov imaging detector
- 1000 m underground in Kamioka mine
- 50 kton volume (fiducial 22.5 kton)
- ~11100 20" PMTs in inner detector (ID) for Cherenkov ring imaging
- ~1800 8" PMTs for outer detector (OD)

Phase	Period	# of PMTs	
SK-I	1996.4 ~ 2001.7	11146 (40%)	
SK-II	2002.10 ~ 2005.10	5182 (20%)	
SK-III	2006.7 ~ 2008.8		
SK-IV	2008.9 ~ 2018.5	11129 (40%)	
SK-V	2019.4 ~		

Oscillation fit with reactor and T2K model

PRD 97, 072001 (2018)

- Full 3-flavor fit performed with reactor θ_{13} and T2K constraints
- T2K data gives stronger constrain on Δm^2 and θ_{23} , improving mass hierarchy sensitivity
- Normal hierarchy is preferred: $\Delta \chi^2 = \chi^2_{NH} - \chi^2_{IH} = -5.27$
- p-value of true IH is 0.023

	Δm ² 32	sin²(θ23)	δср
NH	2.5x10 ⁻³	0.550	4.88
IH	2.4x10 ⁻³	0.550	4.54

Recent Improvements in SK

- Improved event reconstruction (vertex, energy, PID, etc) by new algorithm
- Fiducial volume extension (Dwall=2m 0.5m) : +30% increase in event rate
 - Resulting better sensitivities in mass hierarchy

Result with New Reconstruction

- SK-IV data only (3118.5 days of livetime) with reactor constraint
- Still normal hierarchy is preferred: $\Delta \chi^2 = \chi^2_{NH} - \chi^2_{IH} = -2.45$
- p-value for IH is 0.025 0.072
 depending on true sin²(θ₂₃)=0.4-0.6

	Δm ² 32	sin²(θ23)	δcp
NH	2.53x10 ⁻³	0.425	3.14
IH	2.53x10 ⁻³	0.425	4.89

Tau Appearance in SK

- In the standard 3-flavor oscillation, v_{μ} disappearance is explained by $v_{\mu} \rightarrow v_{\tau}$ oscillation
- Direct detection of oscillated v_{τ} is critical for verifying neutrino SM
- Aim to detect hadronic decay (branching ratio: 65%)
- Detection in SK is difficult: low signal rate (~1 event / kton year)
- Large backgrounds (v_eCC , $v_{\mu}CC$, NC)

Tau Appearance in SK

- Utilize neural network (NN) to discriminate tau signal using kinematical variables
- Expected to be appeared in upward direction
- Clear excess seen in final sample (4.6 σ)

- Estimated cross section is 1.47 times larger compared to prediction
- Still consistent with SM within 1.5σ

Future Plan in SK

Use tau NN for oscillation analysis

- v_{τ} events could be background for mass hierarchy v_e signal
- v_{τ} cross section has 25% uncertainty
- Apply tau NN to mass hierarchy sample to isolate v_{τ} background

Neutron tagging in SK-Gd

- 0.2% Gd will be dissolved in Super-K to enhance neutron detection (eff. ~ 80%)
- More statistical v_e / \overline{v}_e separation becomes possible, improving MH and δ_{CP} sensitivities

IceCube Experiment

cascade-like (CC v_e , NC)

14

IceCube Oscillation Results

- Three years of DeepCore data in 5.6~56 GeV
- Δm² shifted to larger due to energy scale and calibration error
- Tau appearance with 3.2σ significance
- Measure smaller normalization compared to other experiments but still consistent with SM

Sterile Neutrino Search

Sterile neutrino will produces several effects:

- Additional energy-independent deficit in vµ disappearance because of rapid sterile oscillation
- 2. Matter oscillation in 10 GeV is modified due to different matter potential from active neutrino
- Large sterile mass (Δm²~1eV²) would produce matter resonance in TeV, resulting distinct signature in energy spectrum

Sterile Neutrino Search

Neutrino cross section in TeV

Nature, Vol551 596 (2017) PRL 122, 041101 (2019)

- Neutrinos propagating in the Earth is attenuated above 40 TeV
- Transmission probability depends on energy and zenith angle
- Increase of cross section will moderate above 10 TeV due to finite W[±]/Z⁰ mass
- Some BSM models (extra dimension., leptoquark) predict increase of cross section

Neutrino cross section in TeV

Nature, Vol551 596 (2017) PRL 122, 041101 (2019)

- IceCube measured cross section in 6.3 980 TeV
- Data is compared with averaged v+⊽ prediction with normalization factor
- Measured 1.3 times larger than prediction, but still consistent

- Analysis extended recently for cascade events up to 2 PeV
- Differential cross section agrees with predicted softer-than-linear dependence

Inelasticity Measurement

PRD 99, 032004 (2019)

- Inelasticity: energy fraction transferred to hadrons
- So far measured up to 250 GeV by NuTeV
- Estimate with muon track energy and cascade energy around vertex
- Reconstructed visible inelasticity (*y_{vis}*) compared to expectation with charm contribution
- Measurement agrees with SM in 1~100 TeV

Glashow Resonance

- \overline{v}_{e} cross section with electron in matter increased at W boson mass (~6.3 PeV)
 - channel: $\overline{v}_e + e^- \rightarrow W^- \rightarrow \overline{v}_X + X^-$
- Resonance rate will exceed at corresponding energy
- So far one candidate observed, but not yet conclusive

IceCube Upgrade

A. Ishihara, ICRC 2019 Win Yan Ma, TAUP 2019

IceCube Upgrade

A. Ishihara, ICRC 2019 Win Yan Ma, TAUP 2019

Schedule

 10% accuracy of tau normalization expected in 1yr observation

0.50

 $sin^2(\theta_{23})$

0.55

0.60

0.65

0.70

0.45

NOvA 2019 (90%)

SuperK 2018 (90%)

MINOS 2016 (90%)

DeepCore 3 yr 2018 (90%)

IceCube Upgrade 3 yr sensitivity (90%)

T2K 2018 (90%)

IceCube Work in Progress

0.40

0.35

0.0032

0.0030

0.0028

0.0026

0.0024

0.0022

0.0020

0.30

 Comparable precision in oscillation parameters with other experiments **Future Projects**

Hyper-K & DUNE

Hyper-Kamiokande

- Water Cherenkov detector
- ~10 times of Super-K in fiducial volume
- 40,000 PMT (~40% coverage) of improved photo-detection efficiency(x2 compared to SK PMT)

DUNE

- Liquid Argon detector based time projection chamber technique (TPC)
- 4 caverns x 10 kton (40 kton in total)
- high resolution imaging would offer possibilities to discriminate v and \overline{v}

Hyper-K & DUNE sensitivities

- >3σ sensitivity for both MH cases for sin²θ₂₃>0.45 with 10yr data (2.6Mtonyr)
- Possible to discriminate θ_{23} octant at >3 σ for $|\theta_{23}-45|$ >4deg
- Comparable sensitivity for DUNE

PINGU and ORCA

IceCube / PINGU:

- Inner detector configuration of IceCube/DeepCore at South pole
 - 6 Mton effective mass
- Lower threshold (~GeV) with 22 m spacing of string
- ~60,000 atm. v / year expected

KM3NET / ORCA:

- Low energy branch of KM3NeT in Mediterranean Sea
- Dense array of multi-PMT digital optical modules (DOMs)

PINGU / ORCA Sensitivities

Mass Hierarchy

 θ_{23} Octant

 v_{τ} Appearance

Summary

- Atmospheric neutrino measurement is a kind of particle physics utilized by natural beam
- Wide energy range from sub-GeV to ~100 TeV providing many physics opportunities
- Oscillation physics can be performed below 100 GeV
 - Normal hierarchy is preferred
 - tau appearance confirmed by Super-K and IceCube
 - No sterile signal
- IceCube/DeepCore observation provides unprecedented test of SM in TeV energies
- More studies are expected in future projects: SK-Gd, IceCube upgrade, Hyper-K, DUNE, PINGU, ORCA, ...

Stay Tuned !

END