

XXXIX International Symposium on Physics in Collision



# Hard Probes in Heavy-Ion Collisions from RHIC to LHC

#### Zebo Tang (唐泽波)

Department of Modern Physics, University of Science and Technology of China (USTC) State Key Laboratory of Particle Detection and Electronics





#### Outline

- Introduction
- Recent results on Jets
- Recent results on quarkonia
- Summary & Outlook

# Quark gluon plasma (QGP)



Quark gluon plasma (QGP):

- Many-body system with partonic degree of freedom
- Emergent properties

The Universe was in this form ~µs after Big Bang

- Lattice QCD predicts phase transition at high temperature/density
- It was proposed to search for and study the properties of QGP via collisions of heavy ions at high energy
- Operating accelerators: RHIC@BNL, LHC@CERN...

# Hard Probes: Penetrating probes of QGP



#### Hard Probes:

- Dominantly produced in the initial hard scatterings (before QGP formation)
  - Jets
  - Quarkonia
- Interact with the medium when penetrate the medium, probe QGP properties

## **Collisions geometry**





#### Central collisions:

- Small impact parameter
- Large N<sub>part</sub> and N<sub>coll</sub>
- Large multiplicity

Centrality determined according to the measured (charged) multiplicity

#### Jets



#### p+p collisions

#### Heavy-ion collisions

# Suppression of high- $p_{\rm T}$ hadrons in A+A



PIC2019, Sep. 19, 2019, Taipei

## **No suppression in p+Pb**



## **Recent results about suppression of jets**



- Significant suppression of "fully" reconstructed jet is also observed from 40 GeV upto 900 GeV
- More suppression towards central collisions

#### Shift of $p_{\rm T}$ spectrum due to energy loss

## **Di-jet imbalance**



- Clear imbalance of di-jet observed in heavy-ion collisions
- More balanced in peripheral collisions than in central collisions More results from jet geometry engineering are not shown

# **Modification of jet fragmentation**



- Suppression at intermediate  $p_{\rm T}$  or z
- Enhancement at low  $p_{\rm T}$  or z



Hard parton interact with the medium and lose energy in the partonic phase (before fragmentation)

#### **Modification of jet shape**



Lost energy transferred to low- $p_{\rm T}$  particles at large radial distance

### **Bosons in heavy-ion collisions**



#### **Imbalance with isolated-photon**



## Jet fragmentation with isolated-photon





Well defined initial kinematics

$$\xi_T^{\gamma} = ln \frac{-|\vec{p}_T^{\gamma}|^2}{\vec{p}_T^{trk} \cdot \vec{p}_T^{\gamma}} \qquad z = \frac{p_{\rm T}}{p_{\rm T}^{jet}} \cos \Delta R$$

50-100%: Consistent with p+p

0-30%:

- Enhancement for low- $p_{\rm T}$  tracks
- Suppression for intermediate- $p_{\rm T}$  tracks

## Jet shape with isolated-photon



### **Flavor dependent modification?**

![](_page_16_Figure_1.jpeg)

Inclusive jet: gluon jet dominant

Fragmentation function W.R.T p+p shift to higher z for  $\gamma$ -tagged jet compared to inclusive jet  $\rightarrow$  Color charge at play?

#### **Suppression of charm jets**

![](_page_17_Figure_1.jpeg)

Similar suppression trend for D<sup>0</sup>-tagged jets as for inclusive jets and D<sup>0</sup>

#### **Imbalance of bottom jet pairs**

![](_page_18_Figure_1.jpeg)

Similar imbalance for bottom di-jets as for inclusive di-jets

### Flavor/mass dependent energy loss?

![](_page_19_Figure_1.jpeg)

# **Heavy flavor hadron production**

![](_page_20_Figure_1.jpeg)

- $R_{AA}(\Lambda_{c}^{+}) \ge R_{AA}(D_{s}^{+}) \ge R_{AA}(D) \ge R_{AA}(\pi) @ p_{T} \le 10 \text{ GeV/c} @LHC$
- Similar behavior observed @RHIC (not shown)
- $R_{AA}(B_s) > R_{AA}(B^+)$  @  $p_T < 20 \text{ GeV/c}$

#### Hadronization mechanism is important at this region

Heavy quark transport in QGP + quark coalescece + (strangeness enhancement)?

#### Zebo Tang (USTC)

Stay tuned!!

## **Quarkonium suppression in QGP**

![](_page_21_Figure_1.jpeg)

Signature of QGP formation T. Matsui, H. Sazt, PLB174, 416 (1986)

![](_page_21_Figure_3.jpeg)

PIC2019, Sep. 19, 2019, Taipei

## **Quarkonium regeneration in QGP**

![](_page_22_Figure_1.jpeg)

## **Quarkonium in heavy-ion collisions**

Quarkonium production also modified by cold nuclear matter (CNM) effects on top of hot matter effects

Quarkonium production in heavy-ion collisions are the interplay of color-screening/melting, regeneration and CNM effects

Each of the effect has different species,  $p_T$ , rapidity, collision centrality, energy, system ... dependence

![](_page_23_Figure_4.jpeg)

## J/ψ production in p(d)+Au @RHIC

![](_page_24_Figure_1.jpeg)

![](_page_24_Figure_2.jpeg)

- No CNM effects observed in p+A1
- Similar increase trend in p+Au and d+Au at different rapidity
- Consistent with unity at high  $p_T$ ( $p_T > ~ 5 \text{ GeV/c}$ )

# J/ψ production in p+Pb @LHC

![](_page_25_Figure_1.jpeg)

# $J/\psi~R_{AA}$ vs. $p_{T}$ in heavy-ion collisions

![](_page_26_Figure_1.jpeg)

\*All models shown include feed-down and CNM effects

## $J/\psi$ suppression at low $p_T$

![](_page_27_Figure_1.jpeg)

Low p<sub>T</sub>: Interplay of melting, regeneration and CNM effects

 $\begin{array}{cccc} \text{SPS} & \rightarrow & \text{RHIC} & \rightarrow & \text{LHC} \\ \hline Flat \ or \ slightly \ increase & significantly \ increase \end{array}$ 

CNM domainCNM+meltingRegeneration domainZebo Tang (USTC)PIC2019, Sep. 19, 2019, Taipei28

## **Forward rapidity**

![](_page_28_Figure_1.jpeg)

• 2.76→5.02 TeV: Increase is not significant suppression seen in Xe+Xe and Pb+Pb

#### Balance of CNM, melting and regeneration

# $J/\psi$ suppression at high $p_T$

![](_page_29_Figure_1.jpeg)

High  $p_T$ : CNM effects and regeneration are less important

- Significant suppression in central collisions  $\rightarrow$  QGP melting
- Suppression systematically less at RHIC than at LHC  $\rightarrow$  T at play?

# $J/\psi$ suppression at very high $p_T$

![](_page_30_Figure_1.jpeg)

J/ $\psi$  suppression at very high  $p_T$  similar as  $h^{\pm}$ ,  $B \rightarrow J/\psi$  and open charm Driven by parton energy loss?

## **Upsilon suppression @RHIC**

![](_page_31_Figure_1.jpeg)

- Most precise Ys suppression measurements in A+A at RHIC
- More suppression in 0-30% central collisions than peripheral
- $\Upsilon(2S+3S)$  more suppressed than  $\Upsilon(1S) \rightarrow$  Sequential melting

## **Upsilon suppression** *a***<b>LHC**

![](_page_32_Figure_1.jpeg)

More clear signal of sequential suppression Models fairly describe the data

## Can not be explained by CNM effects only

![](_page_33_Figure_1.jpeg)

PIC2019, Sep. 19, 2019, Taipei

## **Summary and Outlook**

- Developments have been made to better understand the "jet quenching" mechanism
  - Isolated-photon tagged jet measurements
  - Examining flavor/mass dependent energy loss is on the way
- More/better evidences of deconfinement via quarkonia recently
  - Heavy quark coalescence (regeneration) seen in low- $p_T J/\psi$
  - QGP melting in high- $p_T J/\psi$
  - Sequential suppression in Upsilon states

Coming in near future:

sPHENIX@RHIC and LHC Run3 data

Significantly increase the statistics (orders of magnitude)

Thanks!

# **Di-jet imbalance**

![](_page_36_Figure_1.jpeg)

- For R=0.4, more di-jet imbalance in Au+Au compared to p+p
- Balance recovered when soft constituents are included
- For R=0.2, balance no longer recovered even includes soft particles

 $\rightarrow$  Softening of jet constituents and broadening of jet structure

parton

medium

# **Upsilon suppression: RHIC vs. LHC**

![](_page_37_Figure_1.jpeg)

 $\Upsilon(1S)$ : Similar suppression at RHIC and LHC, within uncertainties  $\Upsilon(2S+3S)$ : Systematically stronger suppression at LHC than at RHIC Models describe the data at both energies (tension in peripheral collisions for excited states)

#### **Electromagnetic field in heavy-ion collisions**

• Strong EM field accompanies the nuclei in relativistic heavy-ion collisions

 $B \sim \gamma Zeb/R^3 \sim O(10^{14} Tesla)$  @RHIC

• The Lorentz contracted EM field can be expressed in terms of equivalent photon flux *E. Fermi, Z. Phys. 29, 315 (1924)* 

![](_page_38_Figure_4.jpeg)

 The quasi-real photons can initiate γA or γγ collisions in relativistic heavy-ion collisions

#### Clear J/ $\psi$ signals at very low $p_T$

![](_page_39_Figure_1.jpeg)

arXiv: 1904.11658, accepted by PRL

# Very-low- $p_T J/\psi$ enhancement at STAR

![](_page_40_Figure_1.jpeg)

Significant enhancement of J/ $\psi$  yield at p<sub>T</sub><0.1 GeV/c in (semi-)peripheral Au+Au and U+U collisions, R<sub>AA</sub> ~ 40

Confirm ALICE observation (PRL116, 222301 (2016))

#### Momentum transfer squared distribution

![](_page_41_Figure_1.jpeg)

• First -t distribution of  $J/\psi$  production at low  $p_T$  in non-UPC

- Slope =  $177 \pm 22$  (GeV/c)<sup>-2</sup> consistent with expected from coherent photoproduction for an Au nucleus (199 (GeV/c)<sup>-2</sup>)
- The drop at the lowest bin may be an indication of interference  $\chi^2/ndf = 4.8/4$

## **Centrality dependence of yield**

![](_page_42_Figure_1.jpeg)

- No significant centrality dependence for very-low- $p_T J/\psi$
- Model calculations with all scenarios describe data at b~2R
  - "Nucleus+Spectator" and "Spectator+Nucleus" are favored

## **Coherent photoproducts in QGP**

![](_page_43_Figure_1.jpeg)

#### Novel probe of QGP

- Deconfinement
- EM field

• . . .

#### **Relativistic Heavy Ion Collider @BNL**

![](_page_44_Picture_1.jpeg)

#### Large Hadron Collider @CERN

![](_page_45_Picture_1.jpeg)