Recent Results from KOTO Experiment

Yu-Chen Tung University of Chicago

J-PARC E14 KOTO collaboration

- Japan
 - KEK
 - Kyoto Univ.
 - NDA
 - Okayama Univ.
 - Osaka Univ.
 - Saga Univ.
 - Yamagata Univ.

- USA
 - Arizona State Univ.
 - Univ. of Chicago
 - Univ. of Michigan, Ann Arbor
- Russia
 - JINR
- Taiwan
 - National Taiwan Univ.
- Korea
 - Chonbuk National Univ.
 - Jeju National Univ.
 - Korea Univ.

36 experimental physicists from the institutes in Japan and 36 from abroad participate in the KOTO experiment.

The

- Direct CP violating process
 - sensitive to New Physics related to CPV
- FCNC process purely dominated by

- BR(SM) = 3×10^{-11} with less than 2% theoretical uncertainty
 - clean window for

Historical Limits

KOTO-I:

- The first experiment with the designed sensitivity of ~O(-11) for $K_L \rightarrow \pi^0 \nu \nu$
- The current world best limit by KOTO (2015 result) is right above Grossman-Nir bound.
- Will perform critical tests of standard and NP models in the near future.

Kaon @ J-PARC

• Proton

- $\sim 5 \times 10^{13}$ protons per 2s spill @ 50kW beam power
- Target beam power: 100kW
- Kaon
 - Momentum peaked @ 1.4 GeV

Signal Detection

• $K_L \rightarrow \pi^0 \nu \nu$ Invisible

- 2γ with high P_T = signal
- Hermetic Detector
 - no signal in veto detectors

Mode	BR	Handles	
$K_L\!\!\rightarrow\pi^{\pm}\!e^{\mp}\nu$	40.6%	charged (x2), non-EM (x1)	
$K_L\!\!\rightarrow\pi^{\pm}\!\mu^{\mp}\nu$	27.0%	charged (x2), non-EM (x1)	
$K_L \rightarrow \pi^+ \pi^- \pi^0$	12.5%	charged (x2), low π^0 Pt	
$K_L \rightarrow \pi^0 \pi^0 \pi^0$	19.5%	extra photon (x4)	
$K_L \rightarrow \gamma \gamma$	5.5x10 ⁻⁴	low Pt, back-to-back symmetry	
$K_L \rightarrow \pi^+ \pi^-$	2.0x10 ⁻³	charged (x2), non-EM (x2)	
$K_L\!\!\rightarrow\pi^0\pi^0$	8.6x10 ⁻⁴	extra photon (x2)	

Custom-made DAQ Modules by UChicago E-Shop

(Ref: https://edg.uchicago.edu/~bogdan/)

14-bit 16CH 125MHz ADC

• Stratix-II FPGA

12-bit 4CH 500MHz ADC

• Stratix-II FPGA

Clock Distribution and Trigger

- Stratix-II FPGA
- 16 sets of LVDS I/O
- ADC interface module

Optical Fiber Center

- Arria-V FPGA
- 18 Optical Links
- Leve-I & Level-II module

Level-I Trigger (2018-)

Offline Energy distribution after online cut

Level-II Trigger (2017-)

• Clustering Algorithm:

A completed cluster has 4 "net" corners

- Number of net corners / 4 = Number of Clusters
- Trigger Efficiency:

Lv2 Trig.	Trigger Eff.
2	99.6%
3	96.8-99.6%
4	96.8%
6	92.2%

$K_L \rightarrow \pi^0 \nu \nu$ Analysis

Kaon Background

- Kaon backgrounds were studied based on the MC simulation.
- MC's were overlapped by accidental data (target monitor) taken along with physics run.
- Kaon background is negligible at current data statistics based on the MC study.

Decay Mode	Stat. (MC/data)	#BG
$K_L \rightarrow \pi^0 \pi^0$	~13	< 0.18
$K_L \rightarrow \pi^0 \pi^0 \pi^0$	~59	<0.04
$K_L \rightarrow \pi^+ \pi^- \pi^0$	~87	< 0.02
$K_L \rightarrow \pi^{\pm} e^{\mp} \nu$	~28	< 0.09
$K_L \rightarrow \gamma \gamma$	~189	0.005

Data/MC Comparison

Neutron Background

Hadron Cluster

Upstream- π^0

CV-η

Neutron Background

14

Neutron Background - CSD

Cluster Shape Discrimination (CSD)

- Convolutional Neural Net with deep learning
- Input: energy and timing of crystals
- 4 conv. layers + 6 fully connected layers

Neutron Background - CSD

- Neutron Samples:
 - special neutron run
- Gamma Samples:
 - $K_L \rightarrow \pi^0 \nu \nu MC$
- Data/MC good agreement
 - checked by $K_L \rightarrow \pi^0 \pi^0 \pi^0$
- Neutron BG reduction from CSD
 - ~*O*(10-5)

Neutron Background - PSD

Pulse Shape Discrimination (PSD)

• Hadronic pulse wider than EM pulse

Fourier Analysis on ADC waveform

- Neutron Acceptance: 3.2%
- $K_L \rightarrow \pi^0 vv$ acceptance: 90%

Combined Reduction of CSD+PSD

• ~*O*(10-6)

Neutron Background

Accidental Background

acc. peak *in-time peak* (moving) (Fixed) In-time: 5 MeV An in-time hit overlapped by an accidental acc.: 10 MeV pulse resulting in the measured timing nominal time 1.5 outside the veto window. Accidental Pulse * 0.5 50 10 20 30° 40 60 ADC Clock (8ns) superimpose local max.

Accidental Background

Single/Double pulse discrimination on frequency domain using Fourier analysis

Apply :

- Narrow window for single pulse
- Wide window for double pulse

$K_L \rightarrow \pi^0 \nu \nu$

21

$K_L \rightarrow \pi^0 \nu \nu$ (2016-2018 data)

• SES = 6.9×10^{-10}

Preliminan			
	#BG		
KLpi0pi0	<0.18		
KLpi+pi-pi0	<0.02		
KL3pi0 (overlapped pulse)	<0.04		
Ke3 (overlapped pulse)	<0.09		
KL2gamma	0.00 ± 0.00		
Upstream π^0	0.00 ± 0.01		
Hadron cluster	0.02 ±0.00		
CV-pi0	<0.10		
CV-eta	0.03 ± 0.01		
Total	0.05±0.02		

$K_L \rightarrow \pi^0 \nu \nu$ (2016-2018 data)

- SES = 6.9×10^{-10}
- Four candidate events observed in the signal region.
- Will study the nature of the events inside the box.

Preliminar			
	#BG		
KLpi0pi0	<0.18		
KLpi+pi-pi0	<0.02		
KL3pi0 (overlapped pulse)	<0.04		
Ke3 (overlapped pulse)	<0.09		
KL2gamma	0.00 ± 0.00		
Upstream π ⁰	0.00 ± 0.01		
Hadron cluster	0.02 ±0.00		
CV-pi0	<0.10		
CV-eta	0.03 ± 0.01		
Total	0.05±0.02		

$K_L \rightarrow \pi^0 \nu \nu$ (2016-2018 data)

- In one out of four candidate events:
 - A double was observed in NCC (upstream veto counter).
 - Measured timing was ~70ns away from the nominal time.
- The rest of events are still under investigation.

$K_L \rightarrow \pi^0 \gamma$ Analysis

 $K_L \rightarrow \pi^0 \gamma$

$K_L {\rightarrow} \pi^0 \gamma$

- The decay is a CP violating process and is forbidden by the law of angular momentum conservation.
- No measurements up to now.
- KOTO with hermetic veto system is the best place to test this decay.

Reconstruction

- $K_L \rightarrow \pi^0 \gamma$ was reconstructed by finding a common decay vertex under nominal kaon and pion mass assumptions.
- The pairing with the minimum ΔZ was chosen.

 $Z_{vtx}^{\pi^0}$

• Control region-2 was used for MC/data normalization.

Background Sources

$V \rightarrow 2-0$	La	Large	
 <i>K_L</i> → 2π° 1. a photon missed by some w 2. two photons fuse 	ay Χ ΥΥΥ Υ ΥΥΥ ΥΥΥΥ	1	
• $K_L \rightarrow 3\pi^0$ mechanisms similar to $2\pi^0$	<u>Υ</u> ΥΥΥΥΥ	<1	
• Neutron induced BG π^0 produced from <i>n</i> and a single	e acc. cluster	<0.01	
• $K_L \rightarrow 2\gamma$ combines with neutrons	γγη	<0.01	
• $K_L \rightarrow \pi^+ \pi^- \pi^0$ combines with neutrons	γγn π + π -	<0.01	
• $K_L \rightarrow \ell \pi \nu \ (\ell = e \text{ or } \mu)$ e.g., $e^+ e^{\text{detector}} \rightarrow 2\gamma$ and	π^- missed by CV	<0.001	

Background Predictions

Summary

- U.L.[K_L $\rightarrow \pi^0 \upsilon \upsilon$] = 3.0×10-9, based on 2015 data.
- Unblinded the 2016-2018 data in the end of Aug.
 - Four candidate events found inside the signal box.
 - Under Investigation.
- First measurement of $K_L \rightarrow \pi^0 \gamma$ was performed.
 - No event observed.
 - U.L. $[K_L \rightarrow \pi^0 \gamma] = 1.7 \times 10^{-7} \text{ at } 90\% \text{ C.L.}$

Backup

Physics Trigger Table

Veto	Cluster Counts	Modes	Trigger Eff.	Online Prescale
Photon & Charge	2	(*) $K_L \rightarrow \pi^0 \nu \nu$	99.6%	1
Photon & Charge	3	$\mathrm{K_L} \! ightarrow \! \gamma \gamma \gamma$, (**) $\mathrm{K_L} \! ightarrow \! \pi^0 \gamma$	96.8-99.6%	3
Photon & Charge	4	$K_L {\rightarrow} \pi^0 \pi^0 \nu \nu$, $K_L {\rightarrow} \pi^0 \gamma \gamma$	96.8%	1
Photon	4	$K_L \rightarrow \pi^0 e^+ e^-$	96.8%	20
Photon & Charge	6	$K_L { ightarrow} \pi^0 \pi^0 \pi^0$	92.2%	3

*Satoshi Shinohara's Talk **Nobuhiro Shimizu's Talk

Cluster Shape Discrimination

Pattern Classification using Deep Learning Neural Network

Pulse Shape Discrimination

Fourier Analysis on Waveform

Shower Depth Discrimination

Reconstruct Shower Depth using timing

DAQ Upgrades - Trigger

New Level-I (UChicago/NTU) :

- Implemented in 2018
- Veto based on individual CH energy
 - Online pulse peak sensing
 - CH-by-CH calibrated threshold

New Level-II (UChicago/NTU) :

- Implemented in 2017
- Based on cluster counts in CsI
- Broader analysis programs
 - $K_L \rightarrow \gamma \gamma \gamma$, $K_L \rightarrow \pi^0 \gamma$, $K_L \rightarrow \pi^0 \gamma \gamma$...

Trigger: Level-II (2017-)

DAQ Performance

- New Lv1/Lv2 trigger system resolved the DAQ dead time issues.
- Planning on Lv3 upgrade to increase the downstream data throughputs.

DAQ in 2015

- Detector with near 4000 Channels :
 - Full waveform readout by FADC
- 2015 DAQ Performance @ 42 kw:
 - Spill Length: 2 sec
 - Level-I Trigger: 37K events/spill
 - E_{sum} on CsI + Loose veto
 - Level-II Trigger: 9K events/spill
 - Center of Energy (C.O.E.) on CsI
 - Avg. of 85% DAQ Live Ratio
 - DAQ reached its Limitation

Future Runs

Detector - Photon Calorimeter

- KTeV CsI crystals:
 - small: 2.5×2.5×50 cm
 - large: 5.0×5.0×50 cm
 - full scale:
 - 200 cm in diameter
 - 15×15 cm² beam hole
- Resolution:
 - $\sigma_E=3\%$, $\sigma_T=0.25$ ns for 500MeV signal

Train vs. Test

Detector Upgrades

CsI dual-sided readout (2019-)

- MPPC (front) + PMT (back)
- Acceptance:
 - 90% signal events
 - 4% neutron events

Single Event Sensitivity

$FTT \chi 2$ in a Nutshell

Models and Correlations

Rare $K_L \rightarrow \pi^0 \nu \nu$, $BR_{SM} = 3x10^{-11}$

- CPV process.
- theoretically clean, 2% uncertainty.
- "gold mode" for probing deviation from SM.
- enhancement or suppression from new physics?

Gamma Acceptance

8

- Acceptance by shape X² and CSD2015 is sort of uniform in θ
- CSD_DL rejected more on large angles

Neutron Acceptance

- Pi0 kinematic cut was removed
- Acceptance by shape X2 and CSD2015 is uniform in θ
- CSD_DL rejected more on large angles

Shape X² & CSD2015 Acceptance

5.5

6

6.5

7

7.5

Incident Angle (degree)

50₁

45F

40E

35 F

30È

25

20

15L

10E

4.5

5

×10⁸

Fourier PSD

Observed vs. expectation

w/o FPSD, tight veto condition

2

3