
ETP - KIT

Software Trigger Status and Next Steps
2017 Belle II TRG/DAQ Workshop

Thomas Hauth, Nils Braun | August 25, 2017

www.kit.edu

http://www.kit.edu

Introduction

The Software Trigger Module

The software trigger module is a general module to perform cut decisions
needed in the HLT software.

Calculates predefined variables and applies predefined, downloaded
cuts (from the database) on the event.

Each event is classified as rejected or accepted.

Software Trigger Status and Next Steps - Thomas Hauth, Nils Braun August 25, 2017 2/42

Features of the Software Trigger Module

Centralized framework for all cuts and decisions applied for the HLT
software stack

Database up- and download of the cut settings and tag names

Versioning of all cuts through the condition database

Easy to extend calculation framework for variables needed in the cuts

Cuts based on the well-tested GeneralCut from the framework

Easy to use python interface for quick cut development

Nearly 100% unittest coverage

Software Trigger Status and Next Steps - Thomas Hauth, Nils Braun August 25, 2017 3/42

Relevant Software Trigger Channels

Cross Section (nb) Background

BB 1.1000 False
BB charged 0.5643 False
BB mixed 0.5357 False

B → J/ψKsee False
B → νν False
B → π0π0 False
B → ρ0γ False

Continuum (ss̄) 0.3800 False
Continuum (dd̄) 0.4000 False
Continuum (cc̄) 1.3000 False
Continuum (uū) 1.6100 False

....

Software Trigger Status and Next Steps - Thomas Hauth, Nils Braun August 25, 2017 4/42

Relevant Software Trigger Channels

Cross Section (nb) Background

ee→ ee (Bhabha) 74.4000 (False)
ee→ eeee 39.7000 True
ee→ eeµµ 18.9000 True

ee→ γγ 3.3000 False
ee→ µµ 1.0730 False
ee→ ππ False
ee→ ττ 0.9000 False
τ → 1 prong 1 prong False
τ → eγ False

The numbers are taken from ’Overview of the Belle II Physics Generators’ by P. Urquijo
and T. Ferber.

Software Trigger Status and Next Steps - Thomas Hauth, Nils Braun August 25, 2017 5/42

Assumed Cross Section after Level 1

The rates of the background channels are scaled to arrive at 20 kHz for
the following studies
Once the full TSim and L1 menu is available, the studies will be repeated

Software Trigger Status and Next Steps - Thomas Hauth, Nils Braun August 25, 2017 6/42

SoftwareTrigger Cut Module

A Software Trigger Cut (the main entity used in the Software Trigger
Module) is defined by five properties:

The cut condition A string in a format known by the GeneralCut with
variables defined by the calculator you choose (see below).
Example: [visible energy < 1.8438] and

[highest 3 ecl <= 0.3999]

The cut type A reject or accept cut. See the next slide for the difference.

The prescale An accept cut can be statistically scaled down with this
factor (will only lead to a positive result in one of N cases).

Software Trigger Status and Next Steps - Thomas Hauth, Nils Braun August 25, 2017 7/42

SoftwareTrigger Cut Module

A Software Trigger Cut (the main entity used in the Software Trigger
Module) is defined by five properties:

The base identifier This string defines, which variables are calculated for
the event content. Also, you can only choose between cuts
with the same base identifier in one run of the software
trigger module.
Example: fast reco or hlt

The cut identifier This is the identifier making the cut downloadable from
the database. Two cuts with the same identifier but different
base identifiers are stored separately.
Example: reject bkg or accept ee

Software Trigger Status and Next Steps - Thomas Hauth, Nils Braun August 25, 2017 8/42

The three possible results

Each cut can either be an accept or a reject cut. The overall output of the
module depends on this. There are different possibilities:

acceptOverridesReject is set to False (default)
One of the chosen reject cuts is true: the whole event is tagged with
”rejected” and the module gives -1 as a return value
One of the chosen accept cuts is true and no reject cut is true: the whole
event is tagged as ”accepted” and the module gives +1 as a return value
No cut gives a true result: the whole event is tagged as ”don’t know” and the
module gives 0 as a return value

acceptOverridesReject is set to True
One of the chosen accept cuts is true: the whole event is tagged with
”accepted” and the module gives +1 as a return value
One of the chosen reject cuts is true and no accept cut is true: the whole
event is tagged as ”rejected” and the module gives -1 as a return value
No cut gives a true result: the whole event is tagged as ”don’t know” and the
module gives 0 as a return value

A cut gives a true result if its cut condition is true and, in cases of accept cuts, the pre
scale (drawn from a uniform distribution) also leads to a true result.

Software Trigger Status and Next Steps - Thomas Hauth, Nils Braun August 25, 2017 9/42

From where to get the result

There are two possibilities to get the result of a Software Trigger Module
event:

1 The return value of the module is set to -1, 0 or +1, depending on the
results of the cuts.

2 The module writes the results of the individual cuts as well as the
total result to a StoreObj with the type SoftwareTriggerResult.

If you have more than one Software Trigger Module in your path, the
different cut results are all added to the result object.
You can get the results of the single cuts with the getResult function.

The SoftwareTriggerResult replaces the HLTTag as an MDST object,
as it does not contain hard-coded cut tags.

Software Trigger Status and Next Steps - Thomas Hauth, Nils Braun August 25, 2017 10/42

Where to find more information

All the code related to the Software Trigger can be found in
hlt/softwaretrigger.

An example file of the usage is currently under construction in
hlt/softwaretrigger/scripts/softwaretrigger/ init .py.

The shown information plus some more can be found at confluence
https://confluence.desy.de/display/BI/The+Software+

Trigger+Module.

In case of questions, please write a mail to
thomas.hauth@kit.edu.

Software Trigger Status and Next Steps - Thomas Hauth, Nils Braun August 25, 2017 11/42

https://confluence.desy.de/display/BI/The+Software+Trigger+Module
https://confluence.desy.de/display/BI/The+Software+Trigger+Module

Software Trigger Processing Chain

Fast Reco Full Reco

CDC ECL VXD Fit ...

Storage

Selection

Selection

Raw
Input

single basf2 process

Software Trigger Status and Next Steps - Thomas Hauth, Nils Braun August 25, 2017 12/42

FastReco

Idea: Run the the ECL reconstruction and the Legendre-based CDC
track finding first

Only around 10% of the runtime of the full reconstruction chain

Produces ECL clusters and tracks, which can be used to reject the
most copious background sources, esp. Bhabha radiation

The following variables are used for cuts after the FastReco

energy sum of high energetic ECL (> 0.05GeV)

highest 2 ECL cluster energies summend, highest 3 ECL cluster
energy summed

max pt in event

mean(abs(z))

mean(θ)

Please note: All the shown results are preliminary and assume a L1 rate of
20 kHz. This study will be redone once the full L1 simulation is available.

Software Trigger Status and Next Steps - Thomas Hauth, Nils Braun August 25, 2017 13/42

FastReco Efficiency

A selection based on FastReco can reduce the rate from 20 kHz up to
≈ 12 kHz - without affecting the signal channels.

Software Trigger Status and Next Steps - Thomas Hauth, Nils Braun August 25, 2017 14/42

Efficiency and Rates after HLT

0.0

0.2

0.4

0.6

0.8

1.0

Ef
fic

ie
nc

y

After HLT

L1 Trigger
FastReco
HLT

BB
 c

ha
rg

ed BB
BB

 m
ix

ed
B
→
J
/ψ
K
s
ee

B
→
νν

B
→
π

0
π

0

B
→
ρ

0
γ

ba
ck

gr
ou

nd
 o

nl
y

C
on

tin
uu

m
 (c
c̄)

C
on

tin
uu

m
 (d
d̄
)

C
on

tin
uu

m
 (s
s̄)

C
on

tin
uu

m
 (u
ū

)
ee
→
ee

 (B
ha

bh
a)

ee
→
ee
ee

ee
→
ee
µ
µ

ee
→
γ
γ

ee
→
µ
µ

ee
→
π
π

ee
→
ττ

τ→
 1

pr
on

g
1p

ro
ng

τ→
eγ

0
10
20
30
40
50
60
70
80

C
ro

ss
 S

ec
tio

n No Trigger
Level1
FastReco
HLT

R = Lσ = L·
(∑

i∈Channels

εiσi

)
≈ 8.84 kHz

The shown efficiency
is after Level1,
FastReco and HLT.

The HLT and FastReco
can reduce the
background channels
to a very low rate,
reaching the requested
10 kHz.

Note: This study needs
to be redone with full
TSim and updated HLT
trigger menu

Software Trigger Status and Next Steps - Thomas Hauth, Nils Braun August 25, 2017 15/42

Runtime Analysis

Software Trigger Status and Next Steps - Thomas Hauth, Nils Braun August 25, 2017 16/42

Experimental Setup

Measurements on the Runtime of the full reconstruction was
performed on the HLT worker nodes.

All events were processed - cuts on the events were performed in
retrospect.

Software Trigger Status and Next Steps - Thomas Hauth, Nils Braun August 25, 2017 17/42

Average Event Processing Time (in ns)

Processing time depends heavily on the channel.
ECLExpert will not be used in the following HLT path as it is slow and
still under development.

Software Trigger Status and Next Steps - Thomas Hauth, Nils Braun August 25, 2017 18/42

Average Ratio of different FastReco
Modules

As expected: Tracking (light red) takes up significant more time for
topologies with more than one track.

Software Trigger Status and Next Steps - Thomas Hauth, Nils Braun August 25, 2017 19/42

Scaling on Parallel Hardware

Software Trigger Status and Next Steps - Thomas Hauth, Nils Braun August 25, 2017 20/42

Introduction
A good multiprocessing is a crucial feature for the HLT setup,
because only when using the capacity of all 20 cores (x2 with
Hyperthreading), the events can be reconstructed fast enough
The most challenging problem are short-running events, where the
streaming and work-distribution is a quite large percentage of the
whole execution time.
As an example, we look into eeµµ-events only doing a part or the full
reconstruction (which is the setup for HLT, approx. 70 % of the HLT
events will be ”small” events).
One important measure for multiprocessing is the speedup

S(n) =
T (n)− Tinit(n)

T (1)− Tinit(1)

where n is the number of started processes.
Only raw objects are used as input: smaller object size and less
complex streaming procedure

Software Trigger Status and Next Steps - Thomas Hauth, Nils Braun August 25, 2017 21/42

Scaling FullReco for small events

Software Trigger Status and Next Steps - Thomas Hauth, Nils Braun August 25, 2017 22/42

Scaling FastReco for small events

Software Trigger Status and Next Steps - Thomas Hauth, Nils Braun August 25, 2017 23/42

Summary on Scaling Studies
The following items are important for keeping a good multiprocessing
performance:

Reduce log output
Make sure the input and output process can keep up with the data
rate:

DataStore-Streaming is expensive
HDD disks can not cope with our data rate
With many worker processes, the input and output process take away
one core each

NUMA seems not to be a bottleneck (at least not on the HLT nodes)

Understood (and remedied) the major limitations of parallel
processing on HLT
Non-optimal scaling can result from second-order effects (shared
CPU caches, memory bandwidth)
Positive Outcome: Good performance also for small events and
sufficient for B2 HLT online processing

Software Trigger Status and Next Steps - Thomas Hauth, Nils Braun August 25, 2017 24/42

Processing Time Scaled with Cross
Section

With these ration, the average processing time (without cuts) for one average event
is: 0.30 s
Assuming 6400 cores (without degregation because of hypertreading, IO, etc.) with
20 kHz (30 kHz), the limit is 0.32 s (0.21 s).

Software Trigger Status and Next Steps - Thomas Hauth, Nils Braun August 25, 2017 25/42

Average Processing Time with FastReco

FastReco time is blue, FullReco Time is green
Especially the Bhabha processing time greatly reduced, the average
processing time is 0.198 s (was 0.30 s)→ Fits well within the limits of the
HLT farm

Software Trigger Status and Next Steps - Thomas Hauth, Nils Braun August 25, 2017 26/42

Preparations for Phase 2

Software Trigger Status and Next Steps - Thomas Hauth, Nils Braun August 25, 2017 27/42

Preparation of Online Reconstruction

Fast Reconstruction

As CDC and ECL algorithms are reused from the offline code, no
special adaptations are required

The CDC track finding code uses MVA methods for background
rejection which should be retrained with first measured background
events

Full Reconstruction

Alignment and calibration constants are loaded from the database

Ensure the correct global tag is used and each sub-detector
reconstruction will load the correct content

Prepare a fixed software version (monthly build or specific release)
used throughout data taking in phase 2 to ensure reproducibility of
the trigger decision

Both reconstruction stages need to be tested and validated on the
Phase II geometry.

Software Trigger Status and Next Steps - Thomas Hauth, Nils Braun August 25, 2017 28/42

VXDTF 2 Integration

The rewritten track finder for the VXD (named VXDTF 2) is now
available in the release
Online ROI for PXD relies on the SVD tracks found via the VXDTF 2
on the HLT machines
It has a superior performance and will replace the old VXDTF 1 in the
near future
VXDTF 2 needs to be integrated into the online reconstruction chain

First tests show runtime btw. VXDTF 1 and 2 close, but might be
different for the relevant channels in the online use-case
Memory consumption of VXDTF 2 challenging (being optimized)

0.0 0.5 1.0 1.5 2.0 2.5

Transverse momentum / GeV

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

F
in

di
ng

effi
ci

en
cy

84.46+0.37
−0.37 - VXDTF1

94.12+0.25
−0.24 - VXDTF2

Software Trigger Status and Next Steps - Thomas Hauth, Nils Braun August 25, 2017 29/42

Region-of-Interest Finder

Important software component to decide (based on SVD tracks)
which part of the PXD sensor is read out
Implemented by the PXDDataReductionModule and extensively
tested at DESY testbeams in the past
Runtime of this module was optimized by Giulia Casarosa and is now
runtime below 25ms

https://kds.kek.jp/indico/event/24276/session/2/contribution/56/

material/slides/0.pdfSoftware Trigger Status and Next Steps - Thomas Hauth, Nils Braun August 25, 2017 30/42

https://kds.kek.jp/indico/event/24276/session/2/contribution/56/material/slides/0.pdf
https://kds.kek.jp/indico/event/24276/session/2/contribution/56/material/slides/0.pdf

Summary

SofwareTrigger modules have been developed and can be used in a
flexible manner for the FastReco and HLT cuts

Studies on efficiencies on a range of signal and background channels
have been performed and show a good performance

This studies need to be repeated with the actual input form the L1
trigger stage

FastReco method is a way to reduce the processing time of HLT by 1
3

without losing any efficiency in the signal channels

The basf2 software can scale up to 20 cores

Extrapolations to the full size of the HLT farm show that the current
processing time fits well within the budget of the size of the final farm

Software Trigger Status and Next Steps - Thomas Hauth, Nils Braun August 25, 2017 31/42

Backup

Choosing the correct database

It is very important to use the correct database tags for downloading the
cuts. We will first use the local database, then use the central database
with the software trigger cuts and in the end use the production database
for the other entries.

import basf2

basf2.reset_database ()

basf2.use_database_chain ()

basf2.use_local_database ()

basf2.use_central_database("software_trigger_test")

basf2.use_central_database("production")

Software Trigger Status and Next Steps - Thomas Hauth, Nils Braun August 25, 2017 33/42

Using the module
Make sure to include the database code snippet also in your steering file!

import basf2

path = basf2.create_path ()

Import the simulated events (or something analogous)

path.add_module("RootInput")

Reconstruct the information

needed for the fast reco decision

add_reconstruction(path , trigger_mode="fast_reco")

Add the cut module to the path

cut_module = path.add_module("SoftwareTrigger",

baseIdentifier="fast_reco",

cutIdentifiers =["reject_ee", "accept_ee", "reject_bkg"])

Create three new paths (filling is not shown)

events_accepted_path = basf2.create_path ()

events_rejected_path = basf2.create_path ()

events_dont_know_path = basf2.create_path ()

Do something with the result of the module

cut_module.if_value("==-1", events_rejected_path)

cut_module.if_value("==1", events_accepted_path)

path.add_path(events_dont_know_path)

Software Trigger Status and Next Steps - Thomas Hauth, Nils Braun August 25, 2017 34/42

Debug Output

The Software Trigger Module can output all calculated variables for each
event into a ROOT TNTuple file

import basf2

path = basf2.create_path ()

Add the SoftwareTrigger

path.add_module("SoftwareTrigger",

baseIdentifier="fast_reco",

cut_identifiers =[],

storeDebugOutput=True ,

debugOutputFileName="variables.root")

It is important to choose the correct base indentifier, because this defines
which variables are calculated and stored!

Software Trigger Status and Next Steps - Thomas Hauth, Nils Braun August 25, 2017 35/42

Debug Output - continue

After processing the path, a new ROOT file ”variables.root” are created
with a single TTree containing the calculated variables with as many rows
as there were events in the process.

from root_pandas import read_root

df = read_root("variables.root")

Software Trigger Status and Next Steps - Thomas Hauth, Nils Braun August 25, 2017 36/42

Cut Creation and Uploading

Create a reject cut (to reject background events after FastReco) and
upload it to the local database:

from ROOT import Belle2

from Belle2.SoftwareTrigger import SoftwareTriggerCut

from softwaretrigger import db_access

bkg_cut_st = SoftwareTriggerCut.compile(

"[[visible_energy < 1.8438] and

[highest_3_ecl <= 0.3999] and [max_pt <= 0.3152]]",

1, True)

db_access.upload_cut_to_db(bkg_cut_st ,

"fast_reco", "reject_bkg")

After that, the cut is stored in the same folder as you called the python
code from in a folder called ”localdb”. If you run your steering file
accessing this cut in this folder, you can use this new cut.

Software Trigger Status and Next Steps - Thomas Hauth, Nils Braun August 25, 2017 37/42

Cut Creation and Uploading - continue

If you are happy with the cut, you can go and upload it to the central
database. In the moment, I do not push to the production cut but rather
have created my own global tag (software trigger test). If you also
want to push to this tag, call

upload_localdatabase --tag software_trigger_test \

localdb/database.txt \

--final -exp 0

Of course, you are free to create your own global tag and push to this (or
push to another already present global tag). You just have to remember to
change to this cut also in your other steering files.

Software Trigger Status and Next Steps - Thomas Hauth, Nils Braun August 25, 2017 38/42

Scaling FastReco of BB

Software Trigger Status and Next Steps - Thomas Hauth, Nils Braun August 25, 2017 39/42

FastReco example variable: Visible
Energy

Software Trigger Status and Next Steps - Thomas Hauth, Nils Braun August 25, 2017 40/42

Cuts applied after FastReco

The shown cuts are:

Background Cut

EE Cut

Hadron Cut

Software Trigger Status and Next Steps - Thomas Hauth, Nils Braun August 25, 2017 41/42

