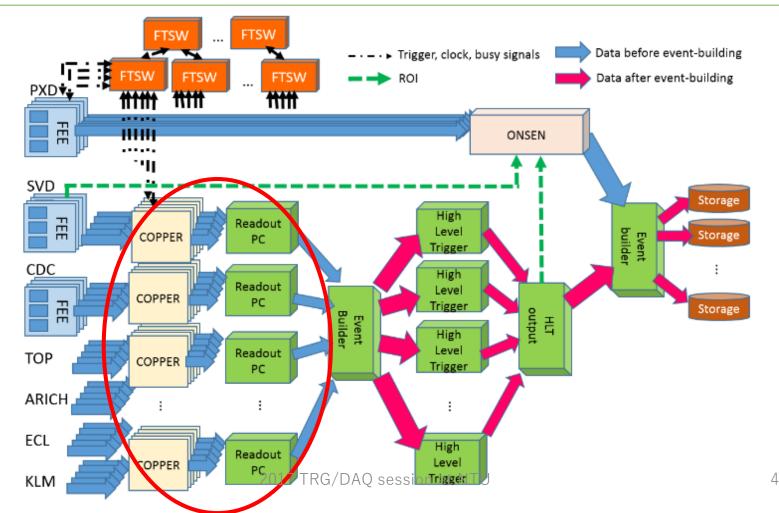
R&D prospect at KEK

S. Yamada

2017 TRG/DAQ session at NTU

Web site for the upgrade


https://confluence.desy.de/display/BI/Upgrade+of+the+Belle+II+Readout+Subsystem

()	cople Create •••	
 DAQ Operation in Belle in Gio DAQ PocketDAQ 	Pages / / DAQ WebHome 🔓 🛛 🥒 🖉	t ☆ Save <u>f</u> or later
DAQ PXDIntegrationDAQ TimingDistribution	Upgrade of the Belle II Readout Subsystem Satoru Yamada posted on 13. Apr. 2017 04:36h - last edited by Satoru Yamada on 24. Aug. 2017 05:01h	
 Readout PCs Slow control Upgrade of the Belle II Read 	 Institutes / people who are interested in the upgrade. I. Koronov (TUM) KEK Belle II DAQ group 	
 > Detector BelleIISchedule > Detector BelleIIWeeklyReport > Detector Material > Detector Radiation 	 Tao Luo (Fudan University) A. Bozek and W. Ostrowicz (INP, Krakow) L. Wood (PNNL) M. Andrew, L. Macchiarulo, and G. Varner (U. Hawaii) Belle II LAL group 	
 ECL WebHome IR WebHome KLM WebHome LABM WebHome 	 Past meetings B2GM in Jun. 2017 Plan for readout upgrade : KEK (S.Yamada/M.Nakao) Belle II regular DAQ meeting in Apr. 2017 Timeline for Upgrade (R. Itoh) 	

1. Motivation of the upgrade

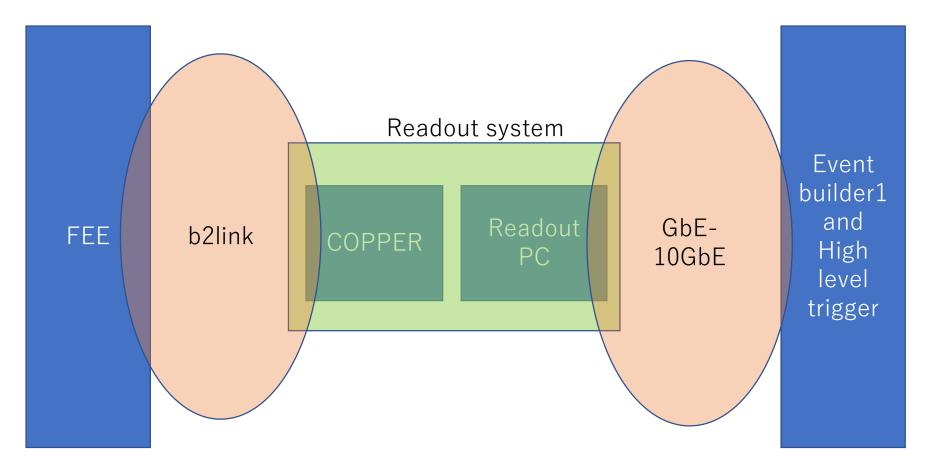
Role of readout system in the Belle II DAQ system

- Read data via Belle2link(from FEE) and send them over Ethernet (to Readout PCs)
- Event-building of data from 4 FEEs, which correspond to 4 FINESSE slots on a COPPER
- > Data formatting (Adding header and trailer)
- ▶ Fast control (e.g. send BUSY signal to FTSW when COPPER FIFO is almost full)
- Slow control (Configure FEE though Belle2link)

Issues to be considered for the Belle II DAQ system

Difficulty in maintenance during the entire Belle-II experiment period

- The number of discontinued parts is increasing.
 - e.g. chipset on a PrPMC card, FIFO and LAN controller on COPPER III
 - For older COPPER II, it is basically difficult to replace parts according to manufacturer.
 - > Four different types of boards(COPPER, TTRX, PrPMC, HSLB) should be taken care of.


Limitation in the improvement of performance of DAQ

- A. Bottlenecks of the current COPPER readout system
 - ➢ CPU usage
 - About 60% COPPER-CPU is used at "30kHz L1 trigger rate with 1kB event size/COPPER"(=Belle II DAQ target value)
 - Data transfer speed
 - ➤ 1GbE/COPPER
- B. Bottleneck due to network output of ROPC
- We need to upgrade the readout system when

 - * luminosity of SuperKEKB exceeds expectations.
 * Lower threshold of L1 trigger is used or trigger-less DAQ is realized.
 - Depending on throughput, network and HLT farms also need to be upgraded. 2017 TRG/DAO session at NTU

2. Possible options and firmware development

Boundary condition

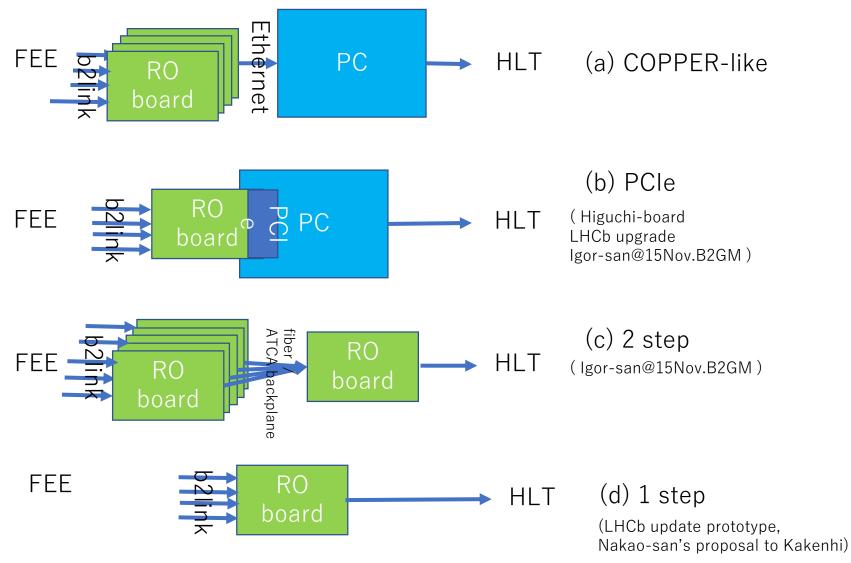
Basic framework of belle2link (Rocket-IO based serial link) should be the same. Otherwise FEE's FW/HW update might be needed.

Upgrade like GbE -> 10GbE will be possible, if we upgrade switches.

<u>Throughput</u>

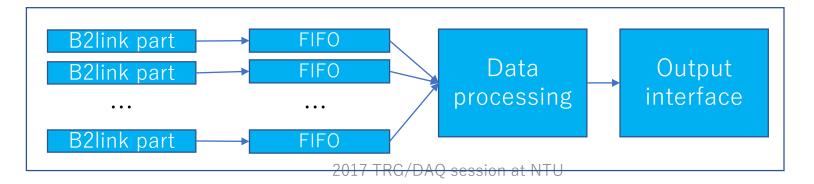
From DAQ Twiki @ 2014 (SVD : 3samples/hit) : (maybe obsolete)

	occup ancy		flow/l ink	daq ovh	detec tor buffer total flow [MB/ s]	inputs (•	input	of s/boar d 10	inputs (of s/boar d 20	inputs (of s/boar d 30	input	of s/boar d 40
			[MB/s]			data flow /boar ds	kU board	data flow /boar ds	# of RO board s	data flow /boar ds	KU board	data flow /boar ds	RU board	data flow /boar ds	# of RO board s
SVD	1.7	48	8.9		428	35.7	12	85.6	5	142.7	3	214.0	2	214.0	2
CDC	10	302	0.6		175	2.3	76	5.6	31	10.9	16	15.9	11	21.9	
ТОР	2.5	64	1.5		96	6.0	16	13.7	7	24.0	4	32.0	3	48.0	
ARICH	1.5	90	1.1		84	3.7	23	9.3	9	16.8	5	28.0	3	28.0	
ECL	33	52	7.7		360	27.7	13	60.0	6	120.0	3	180.0	2	180.0	2
BKLM	1	24	9.7		60	10.0	6	20.0	3	30.0	2	60.0	1	60.0	1
EKLM	2	36	15.9		42	4.7	9	10.5	4	21.0	2	21.0	2	42.0	1
sum							155		65		35		24		19


Data flow per b2link is not so large.

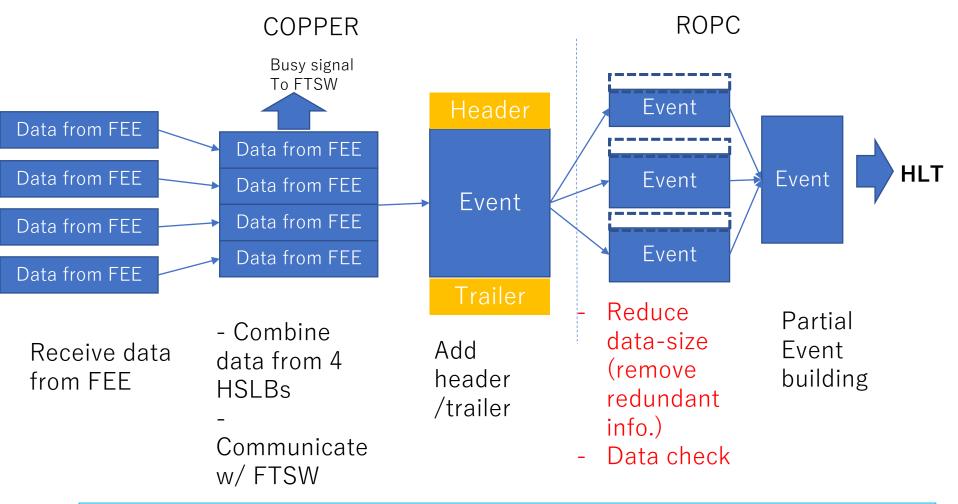
-> if the inputs per board is increased from current 4HSLB/COPPER, we can largely reduce # of RO boards.

-> In that case, some of outputs will become larger than the GbE limit. We need to use 10GbE or reduce # of inputs per RO board for some sub-detectors.


➤ # of inputs ch affect of the selection/of PegeAon at NTU

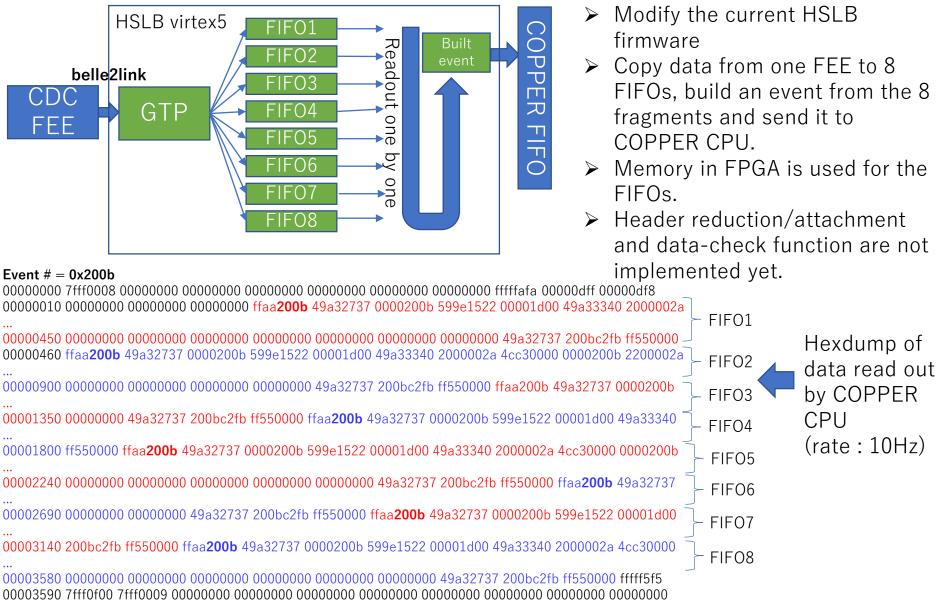
Some of Key factors lies in FPGA firmware development

- # of inputs
 - ${\sim}10~{\rm B2links(GPT)}$ on one board
- Even-building and formatting
- Output protocol
 - Ethernet : 1GbE or 10GbE
- 10GbE output by FPGA((u)ATCA) or PC (PCIe option)
 - FPGA : which IP core will be used ? How to deal with the network congestion
- Long term support for maintenance
 - Board/Firmware development team needs to closely watch the system for years after it starts working in the Belle II.



<u>To push things forward, experience of firmware work for</u> <u>more concrete discussion is needed</u>

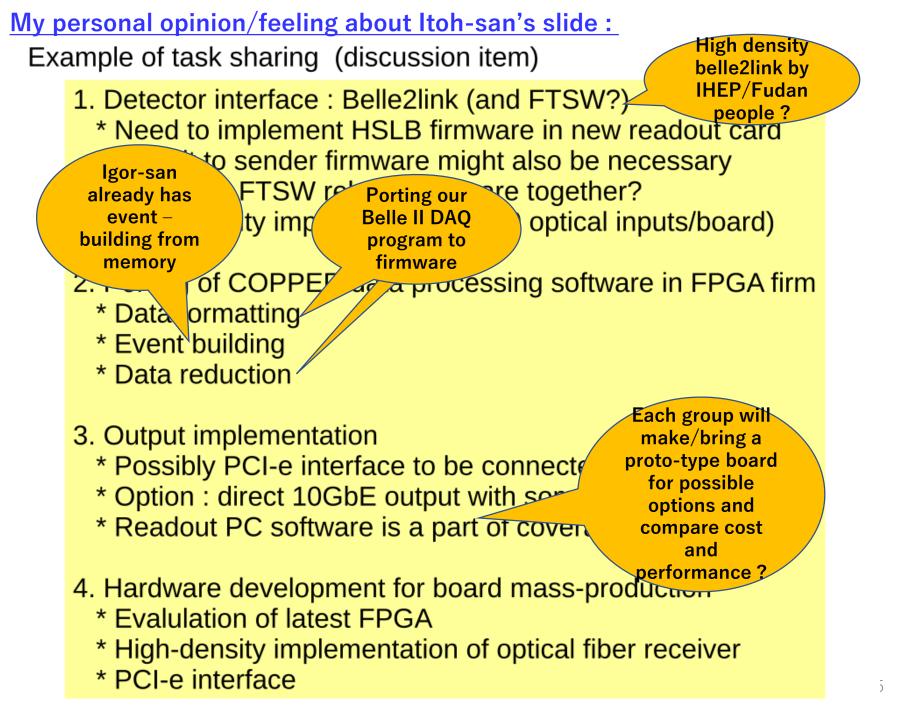
- Available hardware for test/firmware development was discussed at the last B2GM
- Evaluation board (no budget at KEK this fiscal year?)
- DHPCle
 - Prof. Kuhn would ask Igor-san to provide one board to KEK.
- Higuchi-board
 - I borrowed one board used at DEPFET project from Konno-san
 - Konno-san is working for providing resource (DEPFET firmware/driver) to DAQ group.
 - -> Those boards are not available at KEK now.



Current Data processing by COPPER and readout PC to be covered by new RO board

- Not so complicated operation, which could be done by firmware.
- But some data-check and error handling needs to be done by software
 - Keep readout PCs or HLT may be able to do those detailed check

Start to play with a HSLB board for firmware development

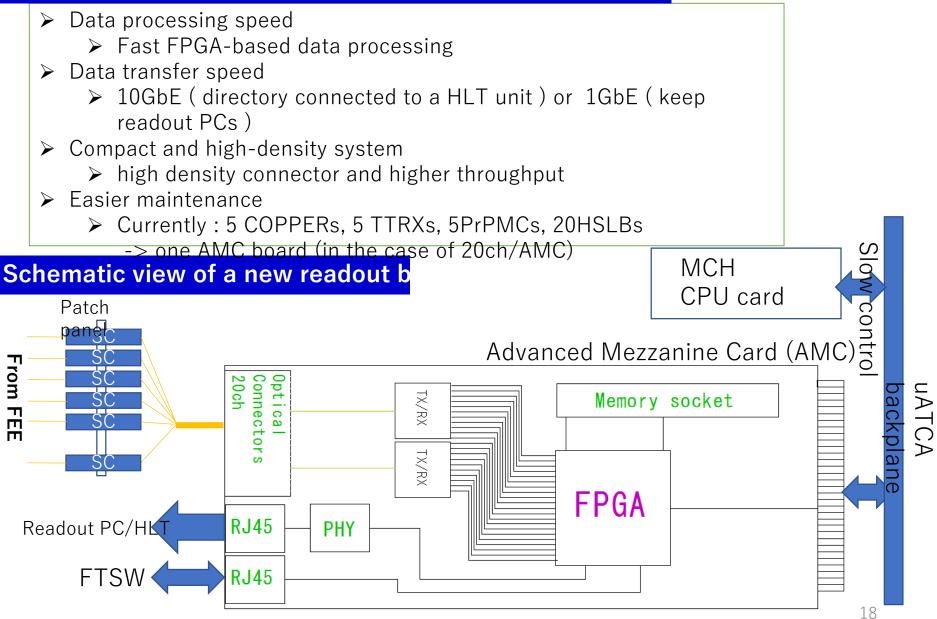


Event # = 0x200c

Itoh-san's previous talk about discussion items :

Example of task sharing (discussion item)

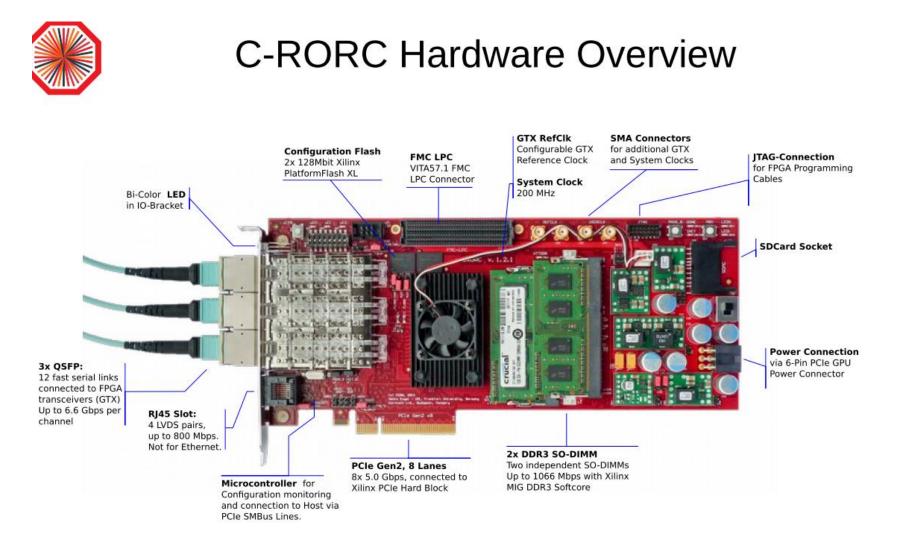
- 1. Detector interface : Belle2link (and FTSW?)
 - * Need to implement HSLB firmware in new readout card
 - * Revisit to sender firmware might also be necessary
 - * Update in FTSW related firmware together?
 - * High-density implementation (>20 optical inputs/board)
- 2. Porting of COPPER data processing software in FPGA firm
 - * Data formatting
 - * Event building
 - * Data reduction
- 3. Output implementation
 - * Possibly PCI-e interface to be connected to readout PC
 - * Option : direct 10GbE output with some ethernet core.
 - * Readout PC software is a part of coverage.
- 4. Hardware development for board mass-production
 - * Evalulation of latest FPGA
 - * High-density implementation of optical fiber receiver
 - * PCI-e interface


<u>Summary</u>

- Even though we have not started the Belle II experiment, it is useful to start thinking possible option of future upgrade of Belle II readout system, because
 - It will become difficult to repair of broken COPPER boards
 - We need to handle the unexpected increase of eventrate or event size.
- Hardware spec. is still open.
 - 'Input = belle2link' and 'output = Ethernet or PC server' will be the boundary condition.
- Firmware in the new RO board should do the dataprocessing currently done by COPPER and readout PC.
- Start playing with available hardware for the firmware development.

Example of a board sketch

2017 TRG/DAQ session at NTU


Comparison of setups

	RO boards	# of PCs	Output to HLT	Data-handling
COPPER-like	20-50 1)	20-50	1GbE ²⁾	Software ©
PCIe	20-50	20-50	1GbE	Software
2 step	20-50	0	10GbE ³⁾	firmware 🛞
1 step	20-50	0	1GbE	firmware

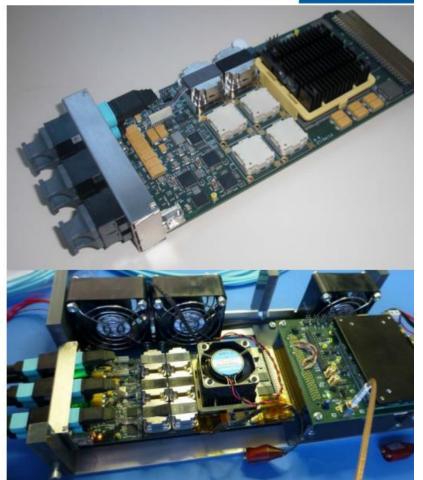
We still have time to decide what to choose.

- Information of event size in actual data-taking will be obtained in the phase II run.
- Estimating processing and I/O ability(implementing many b2link cores and data processing function) by using a test board will be very useful in R & D phase.
- Hopefully, better/cheaper 'commercial off-the-*shelf' products will come.*
 - FPGA
 - Servers, NIC, switch, PCIe

ALICE RUN2 readout board

Former candidate for LHCb Run3

MiniDAQ1 hardware


AMC40 mezzanine + AMCTP carrier

AMC40

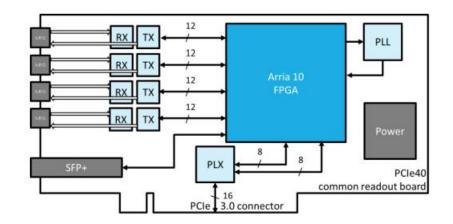
- Stratix5 FPGA
- 3 MiniPOD AFBR-811VxyZ (Tx)
- 3 MiniPOD AFBR-821VxyZ (Rx)
- Up to 24 GBT/WB/GWT
- Up to 12 10GBASE-R Ethernet

AMCTP

- Local 40/80 MHz oscillator
- External clock input
- COM Express Module
- PCI Express x1 to FPGA
- GbE to LAN

22/05/2017

TIPP 2017 - PAOLO DURANTE - MINIDAQ1


2017 TRG/DAQ session at NTU

Current candidate for LHCb Run3

MiniDAQ2 hardware (PCle40)

- PCI express add-in card
 - Full-length, full-height
- Arria10 FPGA
 - 2x resources as Stratix5
 - 24 links: 85% on S5 to 46% on A10
- High-density optical IO
 - Up to 48 bidirectional links
- PCIe Gen3.0 interface to Event Builder
 - Custom 100 Gb/s DMA engine
- Design has been validated
 - Full board self-test
- Initial production started
- Collaboration institutes have started to receive first devices

TIPP 2017 - PAOLO DURANTE - MINIDAQ1

15

PXD DHH/ COMPASS

• Probably, details in Igor-san's talk

<u>UT3/4</u>

Universal Trigger module 3 (UT3)

- FPGA : Virtex-6 HXT
 - FF1923 package : 3 FPGA choices
 - VHX380T ... 14 modules
 - VHX565T ... 14 modules
 - GDL: 4 (2 spares)
 - CDC : 18 (2 spares)
 - KLM : 2 (1 spares)
 - For test bench : 4
- IO
 - Main board
 - Clock: 1 in, 1 out
 - NIM : 2 in, 2 out
 - 24 GTH (11 Gbps x 24)
 - LVDS : 64(32x2) in/out
 - GTX daughter board (optional)
 - 40 GTX (6.25 Gbps x 40)
 - General IO board (optional)
 - Clock : 2 out
 - NIM : 8 in, 8 out
 - RJ-45 for Belle2Link : 4

Other motivation for faster readout system ?

From b2note : "L1 Trigger Menu for Low Multiplicity Physics" https://d2comp.kek.jp/search?ln=en&cc=Belle+II+Notes+%3A+Physics&sc=1&p=&f=&action_search=Search

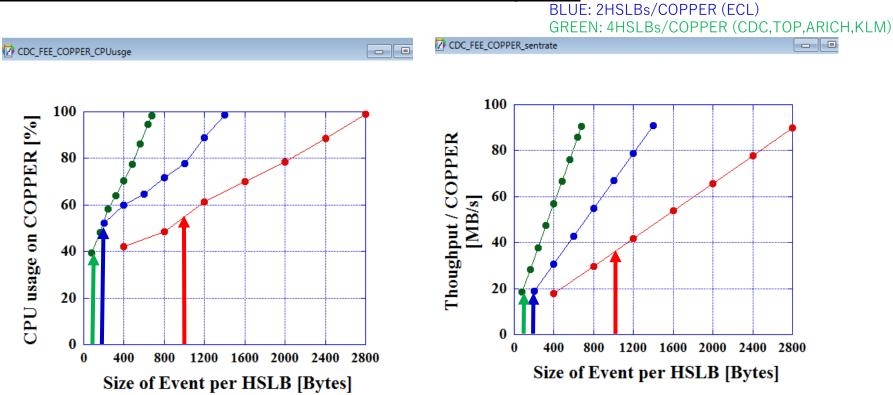
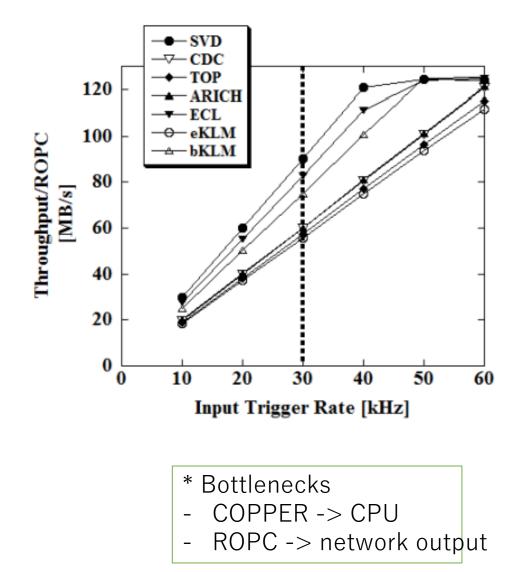

Physics related with low multiplicity event		Processes	T1:2trk	T2:1trk1mu	T3:1mu	T4:1trk1c	T1:bbc	T2:3g	T3:3t	Combine
* Bhabhas, $e+e- \rightarrow \gamma \gamma$, $e+e- \rightarrow \mu + \mu -$		$B^0 \bar{B^0}$	-	96.5	50.0	82.9	44.8	93.4	99.4	> 99.9
luminosity, calibration, QED physics topics		B^+B^-	-	96.5	51.7	84.1	46.2	92.6	99.5	> 99.9
* single photon		ccbar	-	96.8	65.9	89.4	52.1	84.8	98.0	> 99.9
- dark matter search: $e+e- \rightarrow \gamma A'(->\chi \chi)$: $A'=dark$		uds	-	96.5	68.0	89.1	50.0	81.1	97.2	>99.9
photon, χ =dark matter		$\tau \rightarrow \text{generic}$	51.0	60.0	57.2	62.6	28.1	55.6	29.1	94.2
* Initial State Radiation(ISR) : $e+e- \rightarrow \gamma \pi + \pi -$	$\epsilon(\%)$	$\tau \tau (1v1)$	81.0	58.1	61.8	61.3	27.9	47.4	-	97.3
- important for muon g-2 measurement		$\tau \rightarrow e\gamma$	80.0	55.1	56.0	91.7	52.3	85.7	-	99.0
* tau 1 vs 1 final states :		$\tau \rightarrow \mu \gamma$	76.1	48.1	46.2	87.7	57.9	82.2		97.1
- each τ has one charged track		$\pi\pi(\gamma)$	67.9	51.9	67.4	80.0	43.4	42.5		97.4
$-\tau \rightarrow \mu \gamma$ etc.			66.7	49.4	66.3	79.1	43.0	38.6		97.2
* pi0 transition form factor		(1)[-)]	11.1	83.4	35.4		92.4	17.0	81.7	> 99.9
 two photon -> pi0 production * Y di-pion transition 			98.9	94.5	99.7	50.5	52.4	17.0	01.7	55.5
- Y (2,3S)-> $\pi + \pi$ - Y (1S) and Y (1S) -> v v bar or						-	-	-	-	> 99.5
	())		2.2	0.1	0.1		0.8		0.1	3.4
$\begin{array}{c} \chi \chi \\ \ast \gamma \gamma \rightarrow \pi 0 \pi 0 \end{array}$	$\sigma(\text{nb})$		2.6						0.1	3.3
		$ee(\gamma)$	7.2	7.3	10.5	11.1	13.1	2.9	0.6	32.2

TABLE VIII: Efficiencies and Cross section after triggers

- If there are some trigger modes with low efficiency, lowering threshold with reinforced RO system may contribute the improvement of the efficiency.

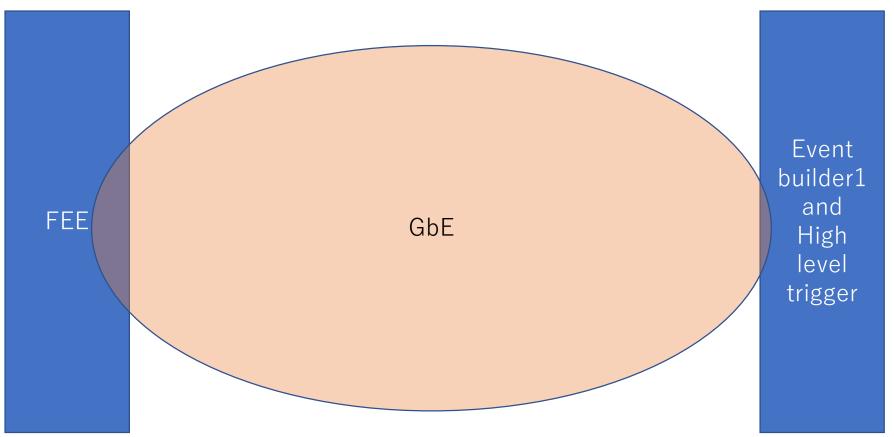
- But, it is not straightforward for the Belle II experiment, where trigger efficiency is already high.

A. Bottlenecks of the current COPPER readout system: 1HSLBs/COPPER (SVD)



https://confluence.desy.de/display/BI/DAQ+EventSizeOfEachSubDetector

	#ch	000	#link	/link	#CPR	ev sz	total	/CPR
		[%]		[MB/s]		[kB]	[MB/s]	[MB/s]
PXD	8	2	40	455	—	800	1820	
SVD	223744	1.7(5.5)	48	8.9(33.8)	48	14.9	428	8.9(33.8)
CDC	14336	10	302	0.6	76	6	175	2.3
BPID	8192	2.5	64	1.5	16	3.2	96	8
EPID	65664	1.5	-90-	72 1.1	-23-	18 2.8	84	4.2
ECL	8736	33	52	7.7	26	12	360	15
BKLM	19008	1	24	9.7	6	2	60	10
EKLM	16800	2	16	35.8	-9-	4 1.4	42	4.7
TRG			19		10			


COPPER CPU usage will be the bottleneck.

B. Bottlenecks of the readout PC

Throughput is saturated due to the limit of output GbE bandwidth.

If the update of FEE sides is allowed …

Better Debugging/Maintenance ? :

Firmware-debugging seems to take more than x10 long time than software-debugging for non-experts like me …

Difficult

But

- A lot of firmware update in FEE sides
- Probably, don't have enough buffer on FEE boards
 Busy signal to FTSW like COPPER ?